期刊文献+

基于传送带量子纠缠光的卫星钟差测量 被引量:2

Satellite Clock Offset Measurement Based on Conveyor Belt Quantum Entangled Light
原文传递
导出
摘要 卫星钟差确定受限于经典测量的散粒噪声极限,钟差测量精度仅为ns量级。基于军民领域对高精度时间基准的迫切需求,提出了一种基于双路六延迟传送带量子纠缠光的卫星钟差测量方案,并且该方案以传送带协议为基础。首先,通过自发参量下转换制备了频率纠缠光信号。然后,利用HOM(Hong-Ou-Mandel)干涉仪对频率纠缠光信号进行了二阶关联检测解算,进而得到了钟差信息。最后,仿真分析了相关参数对钟差测量的影响。所提方案无需进行到达时间测量,不受色散效应及星地距离的影响,在理论上可以实现ps量级的卫星钟差测量。 The determination of satellite clock offset is limited by the shot noise limit of classical measurement,and the accuracy of clock offset measurement is only on the order of ns.Based on the urgent demand for high-precision time reference in the military and civilian fields,a satellite clock offset measurement scheme based on dual-channel six-delay conveyor belt quantum entangled light is proposed,and the proposed scheme is based on the conveyor belt protocol.First,the frequency entangled optical signal is prepared by spontaneous parameter down-conversion.Then,the second-order correlation detection solution of the frequency entangled optical signal is carried out by using the HOM(Hong-Ou-Mandel)interferometer to obtain the clock offset information.Finally,the influence of related parameters on the clock offset measurement is simulated and analyzed.The proposed scheme does not need to measure the arrival time,is not affected by the dispersion effect and the distance between the satellite and the ground,and can theoretically realize satellite offset error measurement of the order of ps.
作者 刘勇飞 杨春燕 赵露涵 任钊恒 魏天丽 吴德伟 Liu Yongfei;Yang Chunyan;Zhao Luhan;Ren Zhaoheng;Wei Tianli;Wu Dewei(Information and Navigation College,Air Force Engineering University,Xi'an,Shaanxi 710077,China)
出处 《光学学报》 EI CAS CSCD 北大核心 2022年第4期182-189,共8页 Acta Optica Sinica
基金 国家自然科学基金(62073338)。
关键词 量子光学 卫星钟差 传送带协议 频率纠缠光 Hong-Ou-Mandel干涉仪 quantum optics satellite clock offset conveyor belt protocol frequency entangled light Hong-Ou-Mandel interferometer
  • 相关文献

参考文献3

二级参考文献26

  • 1帅平,曲广吉.导航星座自主导航的时间同步技术[J].宇航学报,2005,26(6):768-772. 被引量:33
  • 2Hong C K,Ou Z Y,Mandel L. Measurement of subpieosec- ond time intervals between two photons by interference[J-]. Phys Rev Lett, 1987,59 : 2044-2046.
  • 3Brown R H, Twiss R Q. A test of a new type of stellar in- terferometer on Sirius [J ]. Nature, 1956, 178 (4541): 1046-1048.
  • 4Gatti A, Brambilla E, Lugiato L A. Entangled imaging and wave-particle duality: from the microscopic to the macro- scopic realm[J]. Phys Rev Lett, 2003,90 : 133603.
  • 5Li H, Shi J H, Zhu Y C, et al. Periodic diffraction correlation imaging through strongly scattering mediums[J-]. Applied Physics Letters, 2013,103 .. 061901.
  • 6Sun M J, Shi J H, Li H, et al. A simple optical encryption based on shape merging technique in periodic diffraction correlation imaging [J]. Opt Express, 2013, 21 (16): 19395-19400.
  • 7Li H,Shi J H,Chen Z P,et al. Detailed quality analysis of i- deal high-order thermal ghost imaging[J]. J Opt Soe Am A,2012,29(11) :2256-2262.
  • 8Wang L G,Qamar S,Zhu S Y,et al. Hanbury Brown-Twiss effect and thermal light ghost imaging: a unified approach [J]. Phys Rev Series A,2009,79(3B) :033835.
  • 9Pittman T B, Shih Y H, Strekalov D V, et al. Optical ima- ging by means of two-photon quantum entanglement [J]. Phys Rev A,1995,52(5) :R3429-R3432.
  • 10Zhu J, Lu Y, Huang P, et al. Clock synchronization through second-order coherence of thermal light[J]. AlP Conference Proceeding, 2011,1363(1) .. 117- 120.

共引文献22

同被引文献9

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部