摘要
近年来,有关分数阶全变分(FOTV)的图像去噪问题被广为研究。快速傅里叶变换(FFT)是求解相关子问题最常用的方法,但是FFT只适用于周期边界条件。为了能在非周期边界条件下也能实现好的去噪效果,针对FOTV泊松图像去噪模型,结合增广拉格朗日方法(ALM)和线性化技术提出新的算法。实验表明,在周期边界条件下,与采用FFT的增广拉格朗日方法相比,本文提出的算法在达到几乎相同的去噪效果时,收敛速度较快。而且在零Dirichlet边界条件时,也能实现好的去噪效果。
In recent years,the problem of image denoising using fractional-order total variation(FOTV)has been widely studied.Fast Fourier transform(FFT)is the most universal method to solve related subproblems,but it’s only suitable for periodic boundary conditions.In order to achieve good denoising effect under non-periodic boundary conditions,a new algorithm is proposed for FOTV-based Poisson image denoising model combining the augmented Lagrangian method(ALM)and the linearization technique.Experiments show that compared with ALM using FFT,under periodic boundary conditions,our proposed algorithm converges faster when achieving almost the same denoising effect.Moreover,good denoising effect can also be obtained under zero Dirichlet boundary conditions.
作者
杨俊慈
马明溪
张俊
吴朝明
邓承志
YANG Junci;MA Mingxi;ZHANG Jun;WU Zhaoming;DENG Chengzhi(Jiangxi Province Key Laboratory of Water Information Cooperative Sensing and Intelligent Processing,Nanchang Institute of Technology,Nanchang 330099,China;School of Science,Nanchang Institute of Technology,Nanchang 330099,China)
出处
《南昌工程学院学报》
CAS
2022年第1期97-101,共5页
Journal of Nanchang Institute of Technology
基金
江西省教育厅科学技术研究项目(GJJ170992)
江西省自然科学青年基金项目资助(20192BAB211005)
国家自然科学基金项目资助(61865012,61861032)。
关键词
泊松去噪
分数阶全变分
线性化增广拉格朗日方法
边界条件
Poisson denoising
fractional-order total variation
linearized augmented Lagrangian method
boundary conditions