期刊文献+

分数阶全变分泊松去噪的快速线性化增广拉格朗日方法 被引量:1

Fast linearized augmented Lagrangian method for Poisson denoising using fractional-order total variation
下载PDF
导出
摘要 近年来,有关分数阶全变分(FOTV)的图像去噪问题被广为研究。快速傅里叶变换(FFT)是求解相关子问题最常用的方法,但是FFT只适用于周期边界条件。为了能在非周期边界条件下也能实现好的去噪效果,针对FOTV泊松图像去噪模型,结合增广拉格朗日方法(ALM)和线性化技术提出新的算法。实验表明,在周期边界条件下,与采用FFT的增广拉格朗日方法相比,本文提出的算法在达到几乎相同的去噪效果时,收敛速度较快。而且在零Dirichlet边界条件时,也能实现好的去噪效果。 In recent years,the problem of image denoising using fractional-order total variation(FOTV)has been widely studied.Fast Fourier transform(FFT)is the most universal method to solve related subproblems,but it’s only suitable for periodic boundary conditions.In order to achieve good denoising effect under non-periodic boundary conditions,a new algorithm is proposed for FOTV-based Poisson image denoising model combining the augmented Lagrangian method(ALM)and the linearization technique.Experiments show that compared with ALM using FFT,under periodic boundary conditions,our proposed algorithm converges faster when achieving almost the same denoising effect.Moreover,good denoising effect can also be obtained under zero Dirichlet boundary conditions.
作者 杨俊慈 马明溪 张俊 吴朝明 邓承志 YANG Junci;MA Mingxi;ZHANG Jun;WU Zhaoming;DENG Chengzhi(Jiangxi Province Key Laboratory of Water Information Cooperative Sensing and Intelligent Processing,Nanchang Institute of Technology,Nanchang 330099,China;School of Science,Nanchang Institute of Technology,Nanchang 330099,China)
出处 《南昌工程学院学报》 CAS 2022年第1期97-101,共5页 Journal of Nanchang Institute of Technology
基金 江西省教育厅科学技术研究项目(GJJ170992) 江西省自然科学青年基金项目资助(20192BAB211005) 国家自然科学基金项目资助(61865012,61861032)。
关键词 泊松去噪 分数阶全变分 线性化增广拉格朗日方法 边界条件 Poisson denoising fractional-order total variation linearized augmented Lagrangian method boundary conditions
  • 相关文献

参考文献3

二级参考文献48

  • 1Andrew H, Hunt B. Digital Image Restoration. Englewood Cliffs: Prentice-Hall, 1977.
  • 2Bardsley J, Goldes J. Regularization parameter selection methods for ill-posed Poisson maximum likelihood estimation. Inverse Probl, 2009, 25:095005.
  • 3Bardsley J, Goldes J. An iterative method for edge-preserving MAP estimation when data-noise is Poisson. SIAM J Sci Comput, 2010, 32:171-185.
  • 4Bertero M, Boccacci P, Desider G, et al. Image deblurring with poisson data: From cells to galaxies. Inverse Probl, 2009, 25:123006.
  • 5Bertsekas D. Convex Optimization Theory. Belmont: Athena Scientific, 2009.
  • 6Blomgren P, Chan T. Color TV: Total variation methods for restoration of vector-valued images. IEEE Trans Image Process, 1998, 7:304-309.
  • 7Bovik A. Handbook of image and video processing. New York: Academic Press, 2010.
  • 8Boyd S, Parikh N, Chu E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn, 2011, 3:1-122.
  • 9Brune C, Sawatzky A, Burger M. Bregman-EM-TV methods with application to optical nanoscopy. In: Scale Space and Variational Methods in Computer Vision. New York: Springer, 2009, 235-246.
  • 10Brune C, Sawatzky A, Burger M. Primal and dual Bregman methods with application to optical nanoscopy. Internat J Comput Vision, 2011, 92:211-229.

共引文献5

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部