摘要
中小型企业的快速发展使得如何有效利用其物流资源、降低其物流成本成为一个亟需解决的问题。本文基于运输联盟的角度,建立了以最小化总成本为优化目标,综合考虑各运输需求时间窗、运输量等因素的车货调度模型。而后,提出了3种时间窗处理策略,设计了粒子群算法对上述模型进行求解,并通过算例对模型和算法的有效性进行了分析。算例结果表明,该模型一方面能够显著降低物流总成本,另一方面可有效节约使用车辆数。因此,本文研究对降低社会物流成本、整合社会物流资源具有一定的理论意义。
With the rapid development of small and medium-sized enterprises,how to effectively utilize their logistics resources to reduce their logistics costs has become an urgent problem.Based on the transport alliance’sperspective,this paper establishes a vehicle and cargo scheduling model,whose objective is minimizing the total cost under the consideration of the time window and shipment request volumes.Then,three time window processing strategies are proposed,and a particle swarm optimization(PSO)algorithm is designed to solve the proposed model.The effectiveness of the model and algorithm is analyzed by using the numerical examples.The results show that the proposedmodel can reduce the total logistics cost and reduce the number of vehicles.Therefore,this study has a certain theoretical significance on integrating the social logistics resource and reducing the social logistics costs.
作者
闫芳
张凤
YAN Fang;ZHANG Feng(School of Economics and Management, Chongqing Jiaotong University, ChongQing 400074, China)
出处
《运筹与管理》
CSSCI
CSCD
北大核心
2022年第3期38-43,共6页
Operations Research and Management Science
基金
教育部人文社科资金资助项目(19YJC630198)
中国博士后科学基金资助项目(2019M653345)
重庆市研究生科研创新项目(CYS20286)。
关键词
托运人
运输联盟
时间窗
粒子群算法
车货匹配
shippers
transportation union
timewindow
particleswarmoptimization
vehicle cargo match