期刊文献+

基于图像和IMU传感器的生物行为分析系统设计 被引量:1

Design of Biological Behavior Analysis System Based on Vision and IMU Sensors
下载PDF
导出
摘要 在小鼠行为学实验中,仅使用数字图像处理技术无法对小鼠行为进行全面检测和分析。针对这一问题,文中提出基于图像和IMU传感器结合的生物行为检测方法。该方法在Python编程环境下,利用数字图像处理技术对小鼠运动视频进行检测跟踪,获得小鼠的运动行为学参数。同时,使用本实验室设计的无线蓝牙微型IMU传感器测量小鼠的三轴加速度、三轴角速度、三轴磁力,对测量数据使用扩展卡尔曼滤波算法进行解算以获得小鼠的姿态等体态变化信息。实验结果表明,该系统能较好地自动分析出小鼠的运动行为信息和姿态信息,并能在生物行为分析系统界面上实时显示出行为信息。 In order to solve the problem that the digital image processing technology alone cannot detect and analyze the behavior of mice in behavioral experiments,a biological behavior detection method based on the combination of image and IMU sensor is proposed in this study.In Python programming environment,this method uses digital image processing technology to detect and track the motion video of mice,and obtain the motion behavior parameters of mice.Meanwhile,the wireless bluetooth micro IMU sensor designed by the laboratory is used to measure the three-axis acceleration,three-axis angular velocity and three-axis magnetic force of mice.The extended Kalman filter algorithm is used to solve the measured data to obtain the posture and other posture change information of mice.The experimental results show that the system can automatically analyze the motor behavior and posture information of mice,and can display the behavior information on the interface of biological behavior analysis system in real time.
作者 杨孙运 阚秀 YANG Sunyun;KAN Xiu(School of Electronic and Electrical Engineering,Shanghai University of Engineering Science,Shanghai 201620,China)
出处 《电子科技》 2022年第4期28-34,共7页 Electronic Science and Technology
基金 国家自然科学基金(61803255)。
关键词 小鼠 行为学实验 数字图像处理技术 运动行为学参数 IMU传感器 扩展卡尔曼滤波 姿态信息 实时显示 mice behavioral experiment digital image processing technology motor behavior parameters IMU sensor extended Kalman filtering attitude information real-time display
  • 相关文献

参考文献6

二级参考文献48

  • 1Mahony R, Hamel T, Pflimlin J M. Nonlinear Complementary Filters on the Special Orthogonal Group [ J]. Automatic Control, IEEE Transactions on, 2008,53 ( 5 ) : 1203-1218.
  • 2Euston M, Coote P, Mahony R, et al. A Complementary Filter for Attitude Estimation of a Fixed-Wing Uav [ C ]//Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on. IEEE, 2008 : 340- 345.
  • 3Rehbinder H ,Hu X. Drift-Free Attitude Estimation for Accelerated Rigid Bodies[J]. Automatica,2004,40(4) :653-659.
  • 4Elder M Hemerly, Benedito C O Maciel,Anderson de P Milhan, et al. Attitude and Heading Reference System with Acceleration Com- pensation[ J ]. Aircraft Engineering and Aerospace Technology,2012,84(2) :87-93.
  • 5Brigartte C M N ,Abbate N ,Basile A ,et al. Towards Miniaturization of a MEMS-Based Wearable Motion Capture System[ J]. Industrial Electronics, IEEE Transactions on, 2011,58 ( 8 ) : 3234- 3241.
  • 6Madgwick S. An Efficient Orientation Filter for Inertial and Inertial/ Magnetic Sensor Arrays [ J ]. Report x-io and University of Bristol (UK) ,2010.
  • 7Madgwiek S O H, Harrison A J L, Vaidyanathan R. Estimation of IMU and MARG Orientation Using a Gradient Descent Algorithm [ C ]//Rehabilitation Robotics ( ICORR), 2011 IEEE International Conference on. IEEE,2011 : 1-7.
  • 8Mahony R, Hamel T, Pflimlin J M. Complementary Filter Design on the Special Orthogonal Group SO(3) [ C]//Proc of the IEEE Con- ference on Decision and Control and European Control Conference, 2005 : 1477-1484.
  • 9Robert Mahony,Tarek Hamel,Pascal Morin,et al. Nonlinear Com- plementary Filters on the Special Linear Group [ J ]. International Journal of Control,2012,85(10) :1557-1573.
  • 10董恒,王辉,黄科元.永磁同步电动机驱动系统数字PI调节器参数设计[J].电气传动,2009,39(1):7-10. 被引量:29

共引文献67

同被引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部