期刊文献+

类中心极大的多视角极大熵聚类算法 被引量:2

Multi-view maximum entropy clustering algorithm with center distance maximization
下载PDF
导出
摘要 在数据稀少、数据维度高、多视角聚类任务的情况下,传统极大熵聚类算法会因类中心趋于一致,从而导致聚类失败。为解决此类问题,在传统极大熵聚类算法的基础上,引入类中心惩罚机制,融合权重矩阵实现多视角划分融合,构建出类中心极大的多视角极大熵聚类算法。该算法通过调整每个视角上的权重来体现某个视角的重要性,并通过类中心极大惩罚项解决了多视角聚类任务下,因数据稀少、数据维度高导致每个视角上的类中心趋于一致的问题。通过大量实验进一步证明,该算法在处理高维度、数据稀少、存在干扰数据和多视角的数据集时,其聚类效果明显优于传统的聚类算法。 In the face of sparse data,high data dimensions and multi view clustering tasks,the traditional maximum entropy clustering algorithm will cause clustering failure because the class center tends to be consistent.In order to solve this problem,based on the traditional maximum entropy clustering algorithm,this paper introduced the class center punishment mechanism,integrated the weight matrix to achieve multi perspective division and integration,and constructed a multi view maximum entropy clustering algorithm with class center maximum.The algorithm reflected the importance of a certain perspective by adjusting the weight on each perspective,and solved the problem that the class center on each perspective tends to be consistent due to the scarcity of data and high data dimension in the multi perspective clustering task.Through a large number of experiments,it further proves that the clustering effect of this algorithm is significantly better than the traditional clustering algorithm when dealing with high-dimensional,sparse data,interference data participating and multi view data sets.
作者 丁健宇 祁云嵩 赵呈祥 Ding Jianyu;Qi Yunsong;Zhao Chengxiang(College of Computer,Jiangsu University of Science&Technology,Zhenjiang Jiangsu 212100,China)
出处 《计算机应用研究》 CSCD 北大核心 2022年第4期1019-1023,1059,共6页 Application Research of Computers
基金 中国高校产学研创新基金资助项目(2019ITA01047)。
关键词 极大熵聚类 类中心惩罚项 多视角聚类 类中心一致 maximum entropy clustering central punishment mechanism multi-view clustering algorithm center consistency
  • 相关文献

参考文献2

二级参考文献28

  • 1邓赵红,王士同,吴锡生,胡德文.鲁棒的极大熵聚类算法RMEC及其例外点标识[J].中国工程科学,2004,6(9):38-45. 被引量:12
  • 2HALL L O, GOLDGOF D B. Convergence of the single-pass and on- line fuzzy C-means algorlthms[J]. IEEE Trans on Fuzzy Systems, 2011,19(4) :792-794.
  • 3ZHU L,CHUNG F L,WANG S T. Generalized fuzzy C-means cluste- ring algorithm with improved fuzzy partitions [ J]. IEEE Yrans on Systems Man and Cybernetics,2009,39(3) :578-591.
  • 4DENG Zhao-hong, CAI Ji-shi, CHUNG Fu-Lai, et al. Enhanced soft subspace clustering integrating within-cluster and between-cluster in- formation[J]. Par'tom Rocognition,2010,43(3) :767-781.
  • 5RAJINI N H, BHAVANI R. Enhancing k-means and kernelized fuzzt C-means clustering with cluster center initialization in segmenting MR] brain images [ C ]//Pmc of International Conference on Electronict Computer Technology. 2011:259-263. [.
  • 6WU K L, YANG M S. Alternative C-means clustering algorithms [ J ]. Pattern Recognition ,2002,35 (10) :2267-2278.
  • 7YANG M S. On a class of fuzzy classification maximum likelihood procedures[J]. Fuzzy Sets and Systems, 1993,57(3 ) :365-375.
  • 8LIN J S. Fuzzy clustering using a compensated fuzzy hopfield network [ J]. Neural Processing Letters, t999,10( I ) :35-48.
  • 9LI R P,MUKAIDON M. A maximum entropy approach to fuzzy clus- tering[ C ]//Proc of the 4th IEEE International Conference on Fuzzy System. 1995:2227-2232.
  • 10KARAYIANNIS N B. MECA: maximum entropy clustering al$orithm I C ]//Prec Of the 3rd IEEE Conference on Fuzzy SyStems. 1994:630- 635.

共引文献8

同被引文献21

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部