期刊文献+

锻造+挤压复合变形对SiC_(p)/Mg-Zn-Y-Ca复合材料组织与性能的影响 被引量:3

Effect of forging and extrusion combined deformation on microstructure and properties of SiC_(p)/Mg-Zn-Y-Ca composites
下载PDF
导出
摘要 采用锻造+挤压对SiC_(p)/Mg-Zn-Y-Ca复合材料进行复合变形,研究挤压温度对其组织与力学性能的影响。结果表明:当挤压温度从190℃降低到150℃时,SiC_(p)/Mg-Zn-Y-Ca复合材料的晶粒尺寸随挤压温度的降低而逐渐细化,同时再结晶体积分数也随之减少。不同的挤压温度下复合材料中均存在MgZn_(2)相的动态析出,且析出相尺寸随挤压温度降低逐渐减小,而析出相体积分数逐渐增加。在150℃以0.1 mm/s的挤压速度挤压后,SiC_(p)/Mg-Zn-Y-Ca复合材料的强度最高,其屈服强度和抗拉强度分别为337.2和405.3 MPa。 The combined deformation of SiC_(p)/Mg-Zn-Y-Ca composites was carried out by forging and extrusion,and the effect of extrusion temperature on microstructure and mechanical properties of the composites was studied.The results show that when the extrusion temperature is reduced from 190℃to 150℃,the grain size of the SiC_(p)/Mg-Zn-Y-Ca composites is gradually refined,and the dynamic recrystallization volume fraction is also reduced.The dynamic precipitation of MgZn_(2) phase exists in the composites at different extrusion temperatures.The size of precipitated phase decreases with the decrease of extrusion temperature,and the volume fraction increases gradually.After extrusion at 150℃with the extrusion speed of 0.1 mm/s,the strength of the SiC_(p)/Mg-Zn-Y-Ca composites is the highest,and its yield strength and tensile strength are 337.2 MPa and 405.3 MPa respectively.
作者 张晋华 聂凯波 邓坤坤 康心锴 郭亚超 ZHANG Jin-hua;NIE Kai-bo;DENG Kun-kun;KANG Xin-kai;GUO Ya-chao(College of Materials Science and Engineering,Taiyuan University of Technology,Taiyuan 030024,China;Shanxi Key Laboratory of Advanced Magnesium-based Materials,Taiyuan University of Technology,Taiyuan 030024,China)
出处 《材料热处理学报》 CAS CSCD 北大核心 2022年第2期1-9,共9页 Transactions of Materials and Heat Treatment
基金 国家自然科学基金(51771129,51771128)。
关键词 镁基复合材料 锻造 热挤压 显微组织 力学性能 magnesium matrix composite forging hot extrusion microstructure mechanical property
  • 相关文献

参考文献6

二级参考文献170

  • 1G.L. Song, S.Z. Song, Adv. Eng. Mater. 9 (2007) 298-302.
  • 2F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C.J. Wirth, H. Windhagen, Biomaterials 26 (2005) 3.
  • 3J.C. Gao, S. Wu, L.Y. Qiao, Y. Wang, Trans. Nonferrous Met. Soc. China 18 (2008) 588-592.
  • 4B. Heublein, R. Rohde, V. Kaese, M. Niemeyer, W. Hartung, A. Haverich, Heart 89 (2003) 651-656.
  • 5C.D. Mario, H. Griffiths, O. Goktekin, J. Interv. Cardiol. 17 (2004) 391-395.
  • 6P. Peeters, M. Bosiers, J. Verbist, K. Deloose, B. Heublein, J. Endovascular Ther. 12 (2005) 1-5.
  • 7R. Erbel, C. Di Mario, J. Bartunek, J. Bonnier, B. de Bruyne, F.R. Eberli, P. Erne, M. Haude, B. Heublein, M. Horriga.
  • 8R. Waksman, EuroIntervention 5 (2009) FI03-FI08.
  • 9S.S.A. El-Rahman, Pharmacol. Res. 47 (2003) 189-194.
  • 10Y Nakamura, Y Tsumura, Y. Tonogai, T. Shibata, Y Ito, Toxicol. Sci. 37 (1997) 106-116.

共引文献209

同被引文献48

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部