期刊文献+

基于数据挖掘的复杂光通信网络节点调度方法 被引量:1

Node scheduling method for complex optical communication network based on Data Mining
下载PDF
导出
摘要 为解决当前光通信节点调度中存在的调度效率低,网络覆盖率低的缺陷,提出基于数据挖掘的复杂光通信网络节点调度方法。结合当前光通信网络节点调度的研究进展,找出光通信网络节点调度方法的不足,结合光通信链路方式构建复杂光通信网络模型,利用学习自动机计算方法实现复杂光通信网络节点调度。实验结果表明:当网络节点数量为500个时,设计方法网络覆盖率为0.942%,当网络节点数量相同时,设计方法耗时在6 s以内,综上可知设计方法提高了网络覆盖率和节点调度效率,获得了理想的复杂光通信网络节点调度结果。 In order to solve the problems of low scheduling efficiency and low network coverage in current optical communication node scheduling, a node scheduling method based on data mining for complex optical communication network is proposed. Combined with the current research progress of optical communication network node scheduling, find out the shortcomings of optical communication network node scheduling method, combined with optical communication link mode to build a complex optical communication network model, using learning automata calculation method to achieve complex optical communication network node scheduling. The experimental results show that: when the number of network nodes is 500, the network coverage of the design method is 0.942%, and when the number of network nodes is the same, the design method takes less than 6 s. In conclusion, the design method improves the network coverage and node scheduling efficiency, and obtains the ideal node scheduling results of complex optical communication network.
作者 张媛 李文娟 高鹏 ZHANG Yuan;LI Wenjuan;GAO Peng(College of Mobile Telecommunications,Chongqing University of Posts and Telecom,Chongqing 401520,China)
出处 《激光杂志》 CAS 北大核心 2022年第2期139-143,共5页 Laser Journal
基金 重庆市自然科学研究项目(No.KJQN201802404) 重庆市教育科学“十三五”规划课题:(No.2019-GX-474) 重庆市教育委员会项目(No.203529)。
关键词 复杂光网络 节点覆盖率 节点调度 数据挖掘 调度时间 complex optical network node coverage node scheduling data mining scheduling time
  • 相关文献

参考文献17

二级参考文献88

  • 1Yick J,Mukherjee B,Ghosal D.Wireless sensor networks survey[J].Computer Networks,2008,52(12):2292-2330.
  • 2Sharif A,Potdar V,Chang E.Wireless multimedia sensor network technology:A survey[C]∥7th IEEE International Conference on Industrial Informatics,NDIN 2009,IEEE,2009:606-613.
  • 3Piorno J R,Bergonzini C,Atienza D,et al.HOLLOWS:A poweraware task scheduler for energy harvesting sensor nodes[J].Journal of Intelligent Material Systems and Structures,2010,21(13):1317-1335.
  • 4Dargie W.Dynamic power management in wireless sensor networks:State-of-the-art[J].Sensors Journal,IEEE,2012,12(5):1518-1528.
  • 5Kansal A,Hsu J,Zahedi S,et al.Power management in energy harvesting sensor networks[J].ACM Transactions on Embedded Computing Systems(TECS),2007,6(4):32.
  • 6Chen J J,Kuo T W.Voltage-scaling scheduling for periodic realtime tasks in reward maximization[C]∥26th IEEE International Real-Time Systems Symposium,RTSS 2005,IEEE,2005:355.
  • 7Moser C,Chen J J,Thiele L.Reward maximization for embedded systems with renewable energies[C]∥14th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications,RTCSA’08,IEEE,2008:247-256.
  • 8Moser C,Brunelli D,Thiele L,et al.Real-time scheduling for energy harvesting sensor nodes[J].Real-Time Systems,2007,37(3):233-260.
  • 9Yang P,Catthoor F.Pareto-optimization-based run-time task scheduling for embedded systems[C]∥2003 First IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis,IEEE,2003:120-125.
  • 10Zhang Y,Hu X S,Chen D Z.Task scheduling and voltage selection for energy minimization[C]∥Proceedings of the 39th Annual Design Automation Conference,ACM,2002:183-188.

共引文献108

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部