期刊文献+

基于双阶段特征匹配的非同源SAR船只跟踪方法 被引量:2

Non-Homologous SAR Ship Matching and Tracking Method Based on Two-Stage Feature Matching
下载PDF
导出
摘要 开展星载合成孔径雷达(Synthetic Aperture Radar,SAR)船只匹配跟踪研究是海上船只监测的重要内容,对提升海上目标监测管控能力有重要意义。当前利用SAR卫星进行船只目标匹配跟踪时,由于船只目标尺寸小且船只目标的运动会在SAR图像中产生几何畸变,导致船只目标在SAR图像中难以准确实现匹配跟踪。基于此,本文提出了基于全局和局部双阶段特征匹配的SAR船只目标匹配跟踪方法,该方法能够实现TerraSAR-X和RadarSat-2等不同波段、不同平台(非同源)SAR图像的船只目标匹配跟踪。为验证本文算法的性能,采用了2对TerraSAR-X和RadarSat-2 SAR数据将本文提出的方法与SURF(Speeded Up Robust Features)、Harris和PCA-SIFT(Principal Component Analysis-Scale Invariant Feature Transform)等经典船只目标匹配跟踪算法进行了对比。实验结果表明,本文提出的基于全局和局部双阶段特征匹配船只目标匹配跟踪方法,对运动船只的跟踪性能可达83%,而SURF、Harris和PCA-SIFT算法精度仅为36.2%、27.7%和23.4%,可见本文算法高于这些经典船只目标匹配跟踪算法。本文还分析了船只目标的运动在非同源SAR图像中的几何特征(周长、面积、长宽比等)差异,以及船只目标匹配跟踪算法在非同源SAR中的适用性评估,结果表明,本文方法在船只几何特征形变较大时,也能很好地实现船只目标匹配跟踪。 Study on satellite-borne SAR ship matching and tracking is an important part of maritime ship monitoring and has great significance for improving the ability of maritime target monitoring and control.However,when SAR satellite is used for the ship target matching and tracking,geometric distortions may possibly be generated in the SAR images due to the small size and movement of the ship target,which makes it difficult to accurately match and track the ship target in the SAR images.For this reason,a method for SAR ship target matching and tracking based on global and local two-stage feature matching is proposed.This method can make it possible to realize the ship target matching and tracking on the SAR images of different bands such as TerraSAR-X and RadrarSat-2 and different platforms(non-homologous).In order to verify the performance of the algorithm proposed in the paper,two pairs of TerraSAR-X and RadarSat-2 SAR data are used for comparing the method proposed in the paper with the classic algorithms such as SURF(Speeded Up Robust Features),Harris and PCA-SIFT(Principal Component Analysis-Scale Invariant Feature Transform).The results show that the method proposed in the paper can make the tracking performance for moving ships reach to 83%,while by using SURF,Harris and PCA-SIFT algorithms the accuracy are only 36.2%,27.7%and 23.4%,respectively.It can be seen that the algorithm of this study is much better than those classic algorithms.In addition,the differences in geometric features(e.g.perimeter,area,aspect ratio,etc.)of the ship target motion in the non-homologous SAR images are analyzed and the applicability of the ship target matching and tracking algorithm in the non-homogeneous SAR images is evaluated.The results indicate that by using the method of this study,the ship target matching and tracking can also be achieve better,even when the geometric characteristics of the ship undergo a larger deformation.
作者 王炎 张晰 孟俊敏 刘根旺 包萌 曹成会 WANG Yan;ZHANG Xi;MENG Jun-min;LIU Gen-wang;BAO Meng;CAO Cheng-hui(College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, China;First Institute of Oceanography, MNR, Qingdao 266061, China)
出处 《海岸工程》 2022年第1期48-60,共13页 Coastal Engineering
基金 国家重点研发计划项目--XXX船技术系统(2017YFCXXX204) 国家自然科学基金项目--旋翼无人机雷达船只目标虚拟多站三维成像与类型识别(61971455)和低空远距离条件下海态与目标一体化雷达探测理论与方法(U2006207)。
关键词 SAR 船只跟踪 特征匹配 多层次特征 SAR(Synthetic Aperture Radar) ship tracking feature matching multi-level features
  • 相关文献

参考文献12

二级参考文献65

  • 1郭丽,黄元元,杨静宇.基于形状和空间结构的商标图像检索方法[J].计算机应用与软件,2005,22(1):93-95. 被引量:9
  • 2操峰,陈淑珍,魏丹.一种改进的基于内容的商标图像检索方法[J].计算机工程,2006,32(16):174-176. 被引量:4
  • 3冷雪飞,刘建业,熊智.基于分支特征点的导航用实时图像匹配算法[J].自动化学报,2007,33(7):678-682. 被引量:33
  • 4Haralick R M,Shanmugam K.Texture features for image classification.IEEE Tmns.on Sys,Man,and Cyb,1973,SMC-3(6):610-621.
  • 5Ulaby FT,Kouyate F,Brisco B,et al.Texturalinformation in SAR Images.IEEE Transactions on Geoscience and Remote Sensing,1986,24(2):235-245.
  • 6Qi Heng, Li Keqiu, Shen Yanming, et al.An effective solution for trademark image retrieval by combining shapedescription and feature matching[J].Pattern Recognition, 2010, 43 (6) : 2017-2027.
  • 7Wei Chia-Hung,Li Yue,Chau Wing-Yin.Trademark image retrieval using synthetic features for describing global shape and inte- rior structure[J].Pattern Recognition,2009,42(3):386-394.
  • 8Lowe D G.Distinctive image features from scale-invariant keypoints[J].Intemational Journal of Computer Vision,2004,59(1).
  • 9Hu K M.Visual pattern recognition by moment invariant[J]. IEEE Transactions on Information Theory, 1962,8(2) : 179-187.
  • 10章毓晋.图像工程上册——图像处理和分析[M].北京:清华大学出版社,1999.182-186.

共引文献225

同被引文献22

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部