期刊文献+

The combined toxicity and mechanism of multi-walled carbon nanotubes and nano copper oxide toward freshwater algae:Tetradesmus obliquus

原文传递
导出
摘要 Nanoparticles(NPs)are widely used for their special physical properties and released into the natural environment.When two types of NPs exist in the same environment,the presence of one type of NP may affect the properties of the other type of NP.This study investigated the toxic effects of multi-walled carbon nanotubes(MWCNTs)and copper oxide nanoparticles(Cu O NPs)on Tetradesmus obliquus.Both NPs had toxic effects on algae,and the toxic effects of MWCNTs were significantly stronger than Cu O NPs which the 96-hr median effective concentration to algae were 33.8 and 169.2 mg/L,respectively.Oxidative stress and cell membrane damage were the main reasons for the toxicity of NPs to algae,and they were concentration-dependent,and the existence of Cu O NPs in some groups reduced cell membrane damage caused by MWCNTs which may because that Cu O NPs formed heteroaggregation with MWCNTs,reducing the contact of nanoparticles with cell membranes,then reducing physical damage.Scanning electron microscopy(SEM)and transmission electron microscope(TEM)results indicated cell damage,the heteroaggregation of MWCNTs-Cu O NPs and obvious nanoparticles internalization.In some groups,the presence of Cu O NPs significantly reduced reactive oxygen species(ROS)level induced by MWCNTs.However,for the highest concentration group,the ROS level was much higher than that of the two NPs alone treatment groups,which might be related to the high concentration of MWCNTs promoting the internalization of Cu O NPs.MWCNTs and Cu O NPs affected and interacted with each other,causing more complex toxic effects on aquatic organisms.
出处 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2022年第2期376-387,共12页 环境科学学报(英文版)
基金 supported by the National Natural Science Foundation of China(Nos.51521006,51579095,51378190) Ecology and Environment Department of Hunan,the Program for Changjiang Scholars and Innovative Research Team in University(No.IRT-13R17)。
  • 相关文献

参考文献1

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部