期刊文献+

榭皮黄酮通过抑制Traf6/NF-κB信号转导通路增强5-氟尿嘧啶对HepG2的化疗作用

Quercetin enhances the chemotherapeutic effect of 5-fluorouracil on HepG2 by suppressing Traf6/NF-κB signaling transduction pathway
下载PDF
导出
摘要 目的研究榭皮黄酮(quercetin,Qu)影响肝癌细胞HepG2对5-氟尿嘧啶(5-fluorouracil,5-FU)的敏感性及Traf6/NF-κB信号转导通路。方法体外培养HepG2细胞,取对数期细胞进行后续实验,将细胞分为对照组(不含任何药物的培养基孵育细胞24 h)、单独Qu组(含40μg/ml Qu的培养基孵育细胞24 h)、单独5-FU组(含50μmol/L 5-FU的培养基孵育细胞24 h)、Qu+5-FU联合处理组(含40μg/ml Qu和50μmol/L 5-FU的培养基共同孵育细胞24 h)、单独Traf6抑制剂C25-140组(2μmol/L C25-140的培养基孵育细胞8 h)、C25-140+Qu+5-FU组(C25-140预处理细胞8 h,然后含40μg/ml Qu和50μmol/L 5-FU的培养基共同处理细胞24 h)。采用CCK8法检测细胞活力,采用倒置显微镜记录细胞克隆数,采用流式细胞术检测细胞凋亡率,采用Western blot检测剪切的半胱氨酸蛋白酶-7(cleaved-caspase 7,Cle-caspase 7)、Clecaspase 3、剪切的聚腺苷二磷酸-核糖聚合酶(cleaved poly ADP-ribose polymerase,Cle-PARP)、肿瘤坏死因子受体相关蛋白6(tumor necrosis factor receptor-associated factor-6,Traf6)、磷酸化转化生长因子-β活化激酶1(phosphorylation transforming growth factor-β-activated kinase 1,p-TAK1)和磷酸化核转录因子(phosphorylation nuclear factor kappa-B,p-NF-κB)蛋白的表达水平。结果Qu(40μg/ml)、5-FU(50μmol/L)和Qu+5-FU组细胞相对活力分别为(82.3±3.1)%、(53.7±4.1)%和(42.4±4.4)%,均显著低于对照组的(100.0±3.4)%,差异有统计学意义(t=5.83、9.54、14.65,P均<0.05);Qu(40μg/ml)组、5-FU(50μmol/L)组和Qu+5-FU组HepG2细胞克隆数分别为534±26、236±25、115±42,均显著低于对照组的701±32(P均<0.05),且Qu+5-FU组显著低于Qu(40μg/ml)组和5-FU(50μmol/L)组(t=31.74,P<0.001;t=11.34,P=0.008)。Qu(40μg/ml)组、5-FU(50μmol/L)组和Qu+5-FU组HepG2细胞凋亡率[(18.9±4.2)%vs(21.4±4.1)%vs(35.7±3.6)%vs(4.6±1.5)%]、Cle-caspase 7(0.11±0.02 vs 0.22±0.03 vs 0.32±0.03 vs 0.05±0.02)、Cle-caspase 3(0.13±0.02 vs 0.18±0.03 vs 0.28±0.03)和Cle-PARP(0.15±0.02 vs 0.24±0.03 vs 0.41±0.03 vs 0.08±0.02)表达水平均显著高于对照组,且Qu+5-FU组显著高于Qu(40μg/ml)组和5-FU(50μmol/L)组(P均<0.05)。Qu(40μg/ml)组、5-FU(50μmol/L)组、Qu+5-FU组HepG2细胞Traf6(0.28±0.02 vs 0.19±0.03 vs 0.11±0.03 vs 0.38±0.02)、p-TAK1(0.23±0.02 vs 0.11±0.03 vs 0.04±0.03 vs 0.38±0.02)和p-NF-κB(0.28±0.02 vs 0.13±0.03 vs 0.05±0.02 vs 0.44±0.03)蛋白相对表达量均显著低于对照组,且Qu+5-FU组均显著低于Qu(40μg/ml)组和5-FU(50μmol/L)组(P均<0.05)。与对照组相比,C25-140组、Qu+5-FU组和Qu+5-FU+C25-140组HepG2细胞相对活力[(73.4±4.1)%vs(65.8±3.6)%vs(47.7±3.9)%vs(100±3.1)%]和细胞克隆数(456±26 vs 413±25 vs 305±42 vs 763±32)显著降低,细胞凋亡率[(24.4±4.1)%vs(29.9±3.7)%vs(51.2±3.7)%vs(3.9±5.2)%]显著升高(P均<0.05);与Qu+5-FU组比较,Qu+5-FU+C25-140组HepG2细胞活力和克隆数显著降低,细胞凋亡率显著升高(P均<0.05)。与对照组相比,Traf6 mimics组HepG2细胞相对活力[(152.4±6.3)%vs(100±3.5)%]、细胞凋亡率[(5.3±3.2)%vs(3.8±2.1)%]和细胞克隆数(978±26 vs 783±32)均显著升高(P均<0.05),Qu+5-FU组和Traf6 mimics+Qu+5-FU组HepG2细胞相对活力[(65.8±4.3)%vs(100±3.5)%;(79.4±4.9)%vs(100±3.5)%]和细胞克隆数(454±25 vs 783±32;623±42 vs 783±32)显著降低,细胞凋亡率[(34.7±4.4)%vs(3.8±2.1)%;(24.4±3.5)%vs(3.8±2.1)%]显著升高(P均<0.05)。与Qu+5-FU组相比,Traf6 mimics+Qu+5-FU组HepG2细胞活力和克隆数显著升高,细胞凋亡率显著降低(P均<0.05)。结论Qu通过抑制Traf6/NF-κB信号转导通路协同诱导5-FU对肝细胞癌的化学治疗作用。 Objective To observe the effects of quercetin(Qu)on the chemotherapeutic sensitivity of 5-fluorouracil(5-FU)and Traf6/NF-κB signaling transduction pathway in HepG2.Methods HepG2 cells were cultured in vitro and log-phase cells were harvested for subsequent experiments.Cells were divided into control group(cells were incubated in a drug-free medium for 24 h),Qu group(cells were incubated in a medium containing 40μg/ml of Qu for 24 h),5-FU group(cells were incubated in a medium containing 50μmol/L of 5-FU for 24 h),Qu+5-FU group(cells were incubated in a medium containing 40μg/ml of Qu and 50μmol/L of 5-FU for 24 h),C25-140 group(cells were incubated in a medium containing 2μmol/L of C25-140 for 8 h)and C25-140+Qu+5-FU group(cells were firstly incubated in a medium containing 2μmol/L of C25-140 for 8 h,then treated with 40μg/ml of Qu and 50μmol/L of 5-FU for 24 h).CCK8 assay was performed to detect the cell viability.Cell colonies were measured by inverted microscope.HepG2 cell apoptotic rate was determined by flow cytometry.The expression levels of cleaved-caspase 7(Cle-caspase 7),Cle-caspase 3,cleaved poly ADP-ribose polymerase(Cle-PARP),tumor necrosis factor receptor-associated factor-6(Traf6),phosphorylation transforming growth factor-β-activated kinase 1(p-TAK1)and phosphorylation nuclear factor kappa-B(p-NF-κB)protein were detected by Western blot.Results The relative cell viability in Qu(40μg/ml)group,5-FU(50μmol/L)group and Qu+5-FU group were(82.3±3.1)%,(53.7±4.1)%and(42.4±4.4)%,respectively,which were significantly lower than that in control group[(100.0±3.4)%,t=5.83,9.54,14.65,all P<0.05].The HepG2 cell colonies number in Qu(40μg/ml)group,5-FU(50μmol/L)group and Qu+5-FU group were 534±26,236±25 and 115±42,respectively,which were significantly lower than that in control group(701±32;all P<0.05).The HepG2 cell colonies number in Qu+5-FU group was significantly lower than that in Qu(40μg/ml)group and 5-FU(50μmol/L)group(t=31.74,P<0.001;t=11.34,P=0.008).The HepG2 cell apoptotic rates[(18.9±4.2)%vs(21.4±4.1)%vs(35.7±3.6)%vs(4.6±1.5)%],Cle-caspase 7(0.11±0.02 vs 0.22±0.03 vs 0.32±0.03 vs 0.05±0.02),Cle-caspase 3(0.13±0.02 vs 0.18±0.03 vs 0.28±0.03)and Cle-PARP(0.15±0.02 vs 0.24±0.03 vs 0.41±0.03 vs 0.08±0.02)in Qu(40μg/ml)group,5-FU(50μmol/L)group and Qu+5-FU group were significantly higher than those in control group,and the above indexes in Qu+5-FU group were significantly higher than those in Qu(40μg/ml)group and 5-FU(50μmol/L)group(all P<0.05).The relative expression levels of Traf6(0.28±0.02 vs 0.19±0.03 vs 0.11±0.03 vs 0.38±0.02),p-TAK1(0.23±0.02 vs 0.11±0.03 vs 0.04±0.03 vs 0.38±0.02)and p-NF-κB(0.28±0.02 vs 0.13±0.03 vs 0.05±0.02 vs 0.44±0.03)in Qu(40μg/ml)group,5-FU(50μmol/L)group and Qu+5-FU group were significantly lower than those in control group,and the above indexes in Qu+5-FU group were significantly lower than those in Qu(40μg/ml)group and 5-FU(50μmol/L)group(all P<0.05).Compared with control group,the cell viability[(73.4±4.1)%vs(65.8±3.6)%vs(47.7±3.9)%vs(100±3.1)%]and colonies number(456±26 vs 413±25 vs 305±42 vs 763±32)in C25-140 group,Qu+5-FU group and Qu+5-FU+C25-140 group decreased significantly and the apoptosis rate[(24.4±4.1)%vs(29.9±3.7)%vs(51.2±3.7)%vs(3.9±5.2)%]increased significantly(all P<0.05);compared with Qu+5-FU group,the cell viability and colonies number in Qu+5-FU+C25-140 group decreased significantly and the apoptosis rate increased significantly(all P<0.05).Compared with control group,the cell viability[(152.4±6.3)%vs(100±3.5)%],apoptosis rate[(5.3±3.2)%vs(3.8±2.1)%]and colonies number(978±26 vs 783±32)in Traf6 mimics group increased significantly,the cell viability[(65.8±4.3)%vs(100±3.5)%;(79.4±4.9)%vs(100±3.5)%]and colonies number(454±25 vs 783±32;623±42 vs 783±32)in Qu+5-FU group and Traf6 mimics+Qu+5-FU group decreased significantly and the apoptosis rate[(34.7±4.4)%vs(3.8±2.1)%;(24.4±3.5)%vs(3.8±2.1)%]increased significantly(all P<0.05).Compared with Qu+5-FU group,the cell viability and colonies number in Traf6 mimics+Qu+5-FU group increased significantly,and the apoptosis rate decreased significantly(all P<0.05).Conclusions Qu synergized the chemotherapeutic effect of 5-FU on hepatocellular carcinoma through the suppression of Traf6/NF-κB signaling transduction pathway.
作者 顾文燕 吴敏 李丽 Gu Wenyan;Wu Min;Li Li(Sterile Supply Centre,the Central Hospital of Enshi Tujia and Miao Autonomous Prefecture,Enshi 445000,Hubei Province,China;Operating Room,the Central Hospital of Enshi Tujia and Miao Autonomous Prefecture,Enshi 445000,Hubei Province,China)
出处 《中国肝脏病杂志(电子版)》 CAS 2022年第1期50-57,共8页 Chinese Journal of Liver Diseases:Electronic Version
基金 湖北省恩施州科技计划项目(E20180015)。
关键词 榭皮黄酮 肝细胞癌 5-氟尿嘧啶 Traf6/NF-κB信号转导通路 Quercetin Hepatocellular carcinoma 5-fluorouracil Traf6/NF-κB signaling transduction pathway
  • 相关文献

参考文献1

二级参考文献28

  • 1Testa U, Riccioni R. Deregulation of apoptosis in acute myeloid leukemia. Haematologica 2007;92:81-94.
  • 2Aruoma OI, Halliwell B, Aeschbach R, Loligers J. Antioxidant and pro-oxidant properties of active rosemary constituents: carnosol and carnosic acid. Xenobiotica 1992;22:257-268.
  • 3Fiander H, Schneider H. Dietary ortho phenols that induce glutathione S-transferase and increase the resistance of cells to hydrogen peroxide are potential cancer chemopreventives that act by two mechanisms: the alleviation of oxidative stress and the detoxication of mutaqenic xenobJotJcs. Cancer Lett 2000:156:117-124.
  • 4Manoharan S, Balakrishnan S, Vinothkumar V, Silvan S. Anti-clastogenic potential of carnosic acid against 7,12-dimethylbenz(a)anthracene (DMBA)-induced clastogenesis. Pharmacol Rep 2010;62:1170-1177.
  • 5Kosaka K, Yokoi T. Carnosic acid, a comoonent of rosemary (Rosmarinus officinalis L.), promotes synthesis of nerve growth factor in T98G human glioblastoma cells. Biol Pharm Bull 2003;26:1620-1622.
  • 6Cheng AC, Lee MF, Tsai ML, Lai CS, Lee JH, Ho CT, et al. Rosmanol potently induces apoptosis through both the mitochondrial apoptotic pathway and death receptor pathway in human colon adenocarcinoma COLO 205 cells. Food Chem Toxicol 2011:49:485-493.
  • 7Shabtay A, Sharabani H, Barvish Z, Kafka M, Amichay D, Levy J, et al. Synergistic antileukemic activity of carnosic acid-rich rosemary extract and the 19-nor Gemini vitamin D analogue in a mouse model of systemic acute myeloid leukemia. Oncology 2008;75:203-214.
  • 8Cerutti PA. Prooxidant states and tumor promotion. Science 1985;227:375-381.
  • 9Wang Q, Harrison JS, Uskokovic M, Kutner A, Studzinski GP. Translational study of vitamin D differentiation therapy of myeloid leukemia: effects of the combination with a p38 MAPK inhibitor and an antioxidant. Leukemia 2005:19:1812-1827.
  • 10Singh RP, Dhanakakshmi S, Agarwal R. Phytochemicals as cell cycle modulators: a less toxic approach in halting human cancer. Cell Cycle 2002;1:156-161.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部