期刊文献+

基于自适应下垂控制的多储能直流微网能量管理策略 被引量:4

Energy Management Strategy for DC Microgrid of Multi-Energy Storage Based on Adaptive Droop Control
下载PDF
导出
摘要 下垂控制作为实现微网协调控制与储能单元(energy storage unit,ESU)荷电状态(state of charge,SOC)均衡的典型方法,受到ESU自身的SOC、容量、极限功率限制,以及母线电压质量、不匹配线路阻抗的影响。综合上述因素,提出了一种基于自适应下垂控制的直流微网能量管理策略,ESU之间根据自身SOC与容量进行功率分配,有效地避免了ESU的过充过放,同时引入电压补偿环节与功率补偿环节,分别消除了下垂控制引起的电压偏差与线路阻抗造成的功率偏差;设置功率调整环节避免出现ESU功率分配超限。最后,通过仿真验证了所提能量管理策略的有效性。 As a typical method to implement the equilibrium between microgrid coordinated control and the State Of Charge(abbr.SOC)of Energy Storage Units(abbr.ESU),and the droop control is affected by its own SOC,capacity and ultimate capacity as well as bus voltage quality and mismatching line impedance.Synthesizing above-mentioned factors,an adaptive droop control based energy management strategy for DC microgrid was proposed.In this control strategy,the power was distributed among ESUs according to its own SOC and capacity to effectively avoid the over-charging and over-discharging of ESU,meanwhile the voltage compensation link and power compensation link were introduced in to respectively eliminate the voltage deviation caused by droop control and the power deviation caused by line impedance.The power correction link was set up to avoid the appearance the out-of-limit of power distribution among ESUs.Simulation results verify the effectiveness of the proposed energy management strategy.
作者 康家玉 史晨雨 王素娥 陈馨儿 KANGJiayu;SHI Chenyu;WANG Sue;CHEN Xiner(College of Electrical and Control Engineering,Shaanxi University of Science and Technology,Xi'an 710021,Shaanxi Province,China)
出处 《现代电力》 北大核心 2022年第2期219-227,共9页 Modern Electric Power
基金 陕西省重点研发计划项目(2021-GY135)。
关键词 直流微网 协调控制 下垂控制 储能单元 荷电状态 DC microgrid coordination control droop control energy storage unit state of charge
  • 相关文献

参考文献13

二级参考文献197

  • 1金科,杨孟雄,阮新波.三电平双向变换器[J].中国电机工程学报,2006,26(18):41-46. 被引量:44
  • 2鲁宗相,王彩霞,闵勇,周双喜,吕金祥,王云波.微电网研究综述[J].电力系统自动化,2007,31(19):100-107. 被引量:926
  • 3Lasseter R, Akhil A, Marnay C, et al. The certs microgrid concept-white paper on integration of distributed energyresources[R]. U.S.: Department of Energy, 2002.
  • 4She X, Huang A Q, Lukic S, et al. On integration of solid-state transformer with zonal DC microgrid[J]. IEEE Trans. on Smart Grid, 2012, 3(2): 975-985.
  • 5Kakigano H, Nishino A, Miura Y, et al. Distribution voltage control for DC microgrid by converters of energy storages considering the stored energy[C]//IEEE Energy Conversion Congress and Exposition. Atlanta, USA: IEEE, 2010: 2851-2856.
  • 6Wu T F, Sun K H, Kuo C L, et al. Predictive current controlled 5 kW single-phase bidirectional inverter with wide inductance variation for DC-microgrid applications [J]. IEEE Trans. on Power Electronics, 2010, 25(12): 3076-3084.
  • 7Kakigano H, Miura Y, Ise T. Low-voltage bipolar-type DC microgrid for super high quality distribution[J]. IEEE Trans. on Power Electronics, 2010, 25(12): 3066-3075.
  • 8Radwan A A A, Mohamed Y A I. Linear active stabilization of converter-dominated DC microgrids [J]. IEEETrans. on Smart Grid, 2012, 3(1): 203-216.
  • 9Anand S, Femandes B G, Guerrero J M. Distributed control to ensure proportional load sharing and improve voltage regulation in low voltage DC microgrids[J]. IEEE Trans. on Power Electronics, 2013, 28(4): 1900-1913.
  • 10Blaabjerg F, Chen Z, Kjaer S B. Power electronics as efficient interface in dispersed power generation systems [J]. IEEE Trans. on Power Electronics, 2004, 19(5): 1184-1194.

共引文献711

同被引文献63

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部