期刊文献+

基于优化残差卷积网络的滚动轴承变工况故障诊断

Variable Condition Fault Diagnosis of Rolling Bearings Based on Optimized Residual Convolution Network
下载PDF
导出
摘要 针对滚动轴承在实际运行环境中同时存在变负荷和变噪声的复合工况干扰而产生的故障诊断效果不理想的问题,提出了一种用于滚动轴承变工况故障诊断的一维残差卷积神经网络方法。将归一化后整理完的原始轴承振动信号输入到网络模型中,利用具有残差连接的多个一维卷积层提取特征,再经过多个卷积池化,最后输入到Softmax层进行分类,输出轴承振动信号的故障类型。将所提方法与一维卷积神经网络(CNN)、LeNet-5和AlexNet几个经典模型进行对比分析,结果表明,本文方法在变噪声实验和变负荷实验中的平均准确率分别为94.16%和95.31%,均高于其他经典神经网路,具有较强的抗噪性和泛化性能力。 In order to solve the problem that the fault diagnosis effect of rolling bearings is not ideal due to the interference of variable load and variable noise in the actual operating environment,a one-dimensional residual convolutional neural network method was proposed for the fault diagnosis of rolling bearings under variable working conditions.The normalized original bearing vibration signals were input into the network model,and multiple one-dimensional convolution layers with residual connections were used to extract features.After multiple convolution pooling,they were finally input into the Softmax layer for classification,and the fault types of bearing vibration signals were output.The proposed method was compared with the classical models of one-dimensional convolutional neural network(CNN),Lenet-5 and AlexNet.The results show that the average accuracy of the proposed method is 94.16%and 95.31%in the variable noise experiment and the variable load experiment,respectively,which are higher than other classical neural networks.The proposed method has strong noise resistance and generalization ability.
作者 段泽森 郝如江 张晓锋 程旺 夏晗铎 Duan Zesen;Hao Rujiang;Zhang Xiaofeng;Cheng Wang;Xia Handuo(School of Mechanical Engineering,Shijjiazhuang Tiedao University,Shijiazhuang 050043,China)
出处 《石家庄铁道大学学报(自然科学版)》 2022年第1期81-85,共5页 Journal of Shijiazhuang Tiedao University(Natural Science Edition)
基金 河北省引进留学人员资助项目(CL201721)。
关键词 一维残差卷积 故障诊断 变工况 滚动轴承 one dimensional residual convolution fault diagnosis variable working condition rolling bearing
  • 相关文献

参考文献9

二级参考文献76

  • 1何宗旺.振动频谱分析在滚动轴承故障诊断中的应用[J].现代零部件,2010(S1):50-53. 被引量:5
  • 2杨宇,于德介,程军圣.基于EMD与神经网络的滚动轴承故障诊断方法[J].振动与冲击,2005,24(1):85-88. 被引量:139
  • 3GRAHAM-ROWE D, GOLDSTON D, DOCTOROW C, et al. Big data: Science in the petabyte era[J]. Nature, 2008, 455(7209): 8-9.
  • 4HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
  • 5KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems, 2012: 1097-1105.
  • 6BALDI P, SADOWSKI P, WHITESON D. Searching for exotic particles in high-energy physics with deep learning[J]. Nature Communications, 2014, 5(1): 1-9.
  • 7WORDEN K, STASZEWSKI W J, HENSMAN J J. Natural computing for mechanical systems research: A tutorial overview[J]. Mechanical Systems and Signal Processing, 2011, 25(1): 4-111.
  • 8BENGIO Y. Learning Foundations and Trends 2(1): 1-127. deep architectures for AI[J] in Machine Learning, 2009,.
  • 9ERHAN D, BENGIO Y, COURVILLE A, et al. Why does unsupervised pre-training help deep learning?[J]. The Journal of Machine Learning Research, 2010, 11: 625-660.
  • 10VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[C]//Proceedings of the 25th International Conference on Machine Learning, ACM, 2008: 1096-1103.

共引文献750

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部