摘要
图的拓扑指数计算是化学图论的重要研究内容之一.近年来,模糊图框架下的拓扑指数逐渐被定义和研究,但缺乏对双极模糊图框架下拓扑指数的扩展.因此,通过对负极隶属度函数和圈连通性的定义,将文献[1]中提出的模糊图圈连通指数概念扩展到双极模糊图的框架.同时认为,一些在原来模糊图上得到的关于圈连通指数的性质,可以推广到双极模糊图框架中.
The calculation of the topological index of graphs is one of the important research contents in chemical graph theory. In recent years, the topological indices under the framework of fuzzy graphs have been gradually defined and studied. However, it lacks the expansion of topological index under the framework of bipolar fuzzy graph. In terms of the definition the negative membership function and cycle connectivity, the concept of cyclic connectivity index of fuzzy graphs proposed in [1] is extended to the setting of bipolar fuzzy graphs. At the same time, some parts of the properties of cyclic connectivity index obtained from the original fuzzy graphs can be extended in bipolar fuzzy graph settings.
作者
兰美辉
高炜
LAN Meihui;GAO Wei(School of Information Engineering,Qujing Normal University,Qujing,Yunnan,China 655011;School of Information Science and Technology,Yunnan Normal University,Kunming,Yunnan,China 650500)
出处
《昆明学院学报》
2021年第6期74-77,共4页
Journal of Kunming University
基金
国家自然科学基金地区基金(11761083)。
关键词
化学图论
模糊图
双极模糊图
圈连通指数
chemical graph theory
fuzzy graph
bipolar fuzzy graph
cyclic connectivity index