期刊文献+

地震载荷对15MW海上风力机动态响应的影响 被引量:3

Effects of Seismic Load on Dynamic Response of a 15 MW Offshore Wind Turbine
下载PDF
导出
摘要 为研究地震载荷对15 MW海上风力机动态响应的影响,基于模态加速度法计算了15 MW海上风力机在风-浪-震耦合工况下的支撑结构载荷、塔顶加速度和气动性能,并与无地震工况下的计算结果进行比较。结果表明:地震载荷对侧向剪切力和横摇弯矩影响显著,而纵向剪切力及俯仰弯矩主要受到湍流风作用;地震发生后塔顶最大加速度增幅可达441%,风轮气动推力和扭矩均发生大幅振荡,发电机功率在短时间内波动剧烈程度增大一倍左右;在风电并网的相关研究中,应当考虑由地震载荷引起的短时功率波动对电网的冲击作用。 In order to study the effects of seismic load on dynamic responses of a 15 MW offshore wind turbine(OWT),the support structure load,tower-top acceleration and aerodynamic performance of the OWT under wind-wave-earthquake coupling condition were calculated based on moda-acceleration method,which were compared with those without earthquake.Results show that the lateral shear force and roll bending moment are significantly affected by seismic load,while the longitudinal shear force and pitch bending moment are mainly affected by turbulent wind.Due to the earthquake excitation,the maximum tower-top acceleration can be increased by 441%,both the aerodynamic thrust and torque of the wind turbine oscillate greatly.Consequently,the standard deviation of the generator power increases by around 100%.It is suggested that the impact of short-term power fluctuation caused by seismic load on the power grid should be considered in the related research of wind power integration.
作者 梅轩 杨阳 MEI Xuan;YANG Yang(College of Civil Engineering,Tongji University,Shanghai 200092,China;Faculty of Maritime and Transportation,Ningbo University,Ningbo 315211,Zhejiang Province,China)
出处 《动力工程学报》 CAS CSCD 北大核心 2022年第2期150-155,196,共7页 Journal of Chinese Society of Power Engineering
基金 上海市浦江人才计划资助项目(2019PJD054) 浙江省自然科学基金资助项目(LQ22E090001)。
关键词 海上风力机 地震 风-浪-震耦合 动态响应 offshore wind turbine earthquake wind-wave-earthquake coupling dynamic response
  • 相关文献

参考文献3

二级参考文献37

  • 1Asareh MA and Prowell I (2011), "Seismic Loading for Fast," National Renewable Energy Laboratory, Technical Report No. NREL/SR-5000-53872, Golden, CO.
  • 2Asareh MA and Volz JS (2013), "Evaluation of Aerodynamic and Seismic Coupling for Wind Turbines Using Finite Element Approach," Proceedings of the ASME 2013 International Mechanical Engineering Congress and Exposition, San Diego, California, USA, V04BT04A041.
  • 3ASCE-7-05 (2005), "Minimum Design Loads for Buildings and Other Structures," American Society of Civil Engineers, New York, NY.
  • 4ASCE/AWEA (2012), "Recommended Practice for Compliance of Large Onshore Wind Turbine Support Structures," ASCE/A WEA RP2011, Reston, VA.
  • 5ATC (2009), "Quantification of Building Seismic Performance Factors," Applied Technology Council, Redwood City, CA.
  • 6AtikLAandAbrahamsonN(2010),"AnImprovedMethod for Nonstationary Spectral Matching," Earthquake Spectra, 26(3): 601-617.
  • 7Baker JW (2011), "Conditional Mean Spectrum: Tool for Mround-Motion Selection," Journal of Structural Engineering, 137(3): 322-331.
  • 8Bazeos N, Hatzigeorgiou GD, Hondros ID, Karamaneas H, Karabalis DL and Beskos DE (2002), "Static, Seismic and Stability Analyses of a Prototype Wind Turbine Steel Tower," Engineering Structures, 24(8): 1015-1025.
  • 9GL (2003), "Rules and Guidelines: Industrial Service: Guideline for the Certification of Wind Turbines," Germanischer Lloyd.
  • 10Hau E and Von Renouard H (2013), "Wind Turbines: Fundamentals, Technologies, Application, Economics," Springer Publications.

共引文献29

同被引文献15

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部