期刊文献+

7055铝合金非等温时效析出过程及力学性能变化 被引量:1

Precipitation Process and Mechanical Properties of 7055 Aluminum Alloy During Non-Isothermal Aging
下载PDF
导出
摘要 文章将一种非等温时效工艺应用于7055铝合金中,使合金力学性能相比T6时效有所提升的同时极大地缩短了时效时间。研究表明,在时效前期的快速升温阶段(100℃~175℃)中,析出相高速形核。降温阶段前期(175℃~145℃),析出相在高温环境下迅速长大;降温阶段后期(125℃~100℃)的低温环境又抑制了析出相的粗化并为新相的析出提供了稳定的环境从而导致了二次析出现象的出现。对比T6时效,非等温时效后的合金内部析出相体积分数上升了0.7%,析出相平均尺寸增大了0.98nm。非等温时效后的合金屈服强度到达660MPa,延伸率为11.5%,抗拉强度723MPa;而时效总用时仅5.625h,相比T6时效缩短了76.6%的时间。 In this paper,a non-isothermal aging(NIA)process is applied to 7055 aluminum alloy,which improved the mechanical properties of the alloy compared with T6 aging and greatly shortened the aging time.The results show that the precipitates nucleate at high speed during the rapid heating stage(100℃~175℃)in the early aging stage.In the early cooling stage(175℃~145℃),the precipitated phase grows rapidly under high temperature environment.In the late cooling stage(125℃~100℃),the low tempearture environment inhibited the coarsening of precipitated phase and provided a stable environment for the precipitation of new phase,leading to the emergence of secondary precipitation phenomenon.Compared with T6,the volume fraction of precipitated phase in the alloy after non-isothermal aging increases by 0.7%,and the average size of precipitated phase increases by 0.98nm.the yield strength,elongation and tensile strength of the alloy afer non-isothermal aging reach 660MPa,11.5%,723MPa respectively.The total aging time is only 5.625h,which is 76.6%shorter than T6.
作者 付多辉 陈忠家 王杰 张缓 Fu Duohui;Chen Zhongjia;Wang Jie;Zhang Huan(School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China)
出处 《有色金属加工》 CAS 2022年第2期22-26,共5页 Nonferrous Metals Processing
关键词 7055铝合金 非等温时效 析出强化 力学性能 7055 aluminum alloy non-isothermal aging precipitation strengthening mechanical properties.
  • 相关文献

参考文献1

二级参考文献16

  • 1R.RANGANATHA,V.ANIL KUMAR,VAISHAKI S.NANDI,R.R.BHAT,B.K.MURALIDHARA.多级热处理工艺对铝合金AA7049性能的影响(英文)[J].中国有色金属学会会刊:英文版,2013,23(6):1570-1575. 被引量:16
  • 2STARKE E A, STALEY J T. Application of modem aluminum alloys to aircraft [J]. Progress in Aerospace Sciences, 1996, 32(2-3): 131-172.
  • 3CHEN Song-yi, CHEN Kang-hua, DONG Peng-xuan, YE Sheng-ping, HUANG Lan-ping. Effect of recrystallization and heat treatment on strength and SCC of an A1-Zn-Mg-Cu alloy [J]. Journal of Alloys and Compounds, 2013, 581: 705-709.
  • 4KOMURA Y, TOKUNAGA K. Structural studies of stacking variants in Mg-base Friauf-Laves phases [J]. Acta Crystallographica B, 1980, 36: 1548-1554.
  • 5DEGISCHER H P, LACOM W, ZAHRA A, ZAHRA C Y. Decomposition processes in an A1-5%Zn-l%Mg alloy: Part II. Electronmicroscopic investigation [J]. Zeitschrift fur Metallkunde, 1980, 71: 231-238.
  • 6BUHA J, LUMLEY R N, CROSKY A G. Secondary ageing in an aluminium alloy 7050 [J]. Materials Science and Engineering A, 2008, 492(1-2): 1-10.
  • 7LI X Z, HANSEN V, GJONNES J, WALLENBERG L R. HREM study and structure modeling of the rophase, the hardening precipitates in commercial A1-Zn-Mg alloys [J]. Acta Materialia, 1999, 47(9): 2651-2659.
  • 8KVERNELAND A, HANSEN V, THORKILDSEN G, LARSEN H B, PATTISON P, LI X Z, GJONNES J. Transformations and structures in the A1-Zn-Mg alloy system: A diffraction study using synchrotron radiation and electron precession [J]. Materials Science and Engineering A, 2011,528(3): 880-887.
  • 9BERG L K, GJONNES J, HANSEN V, LI X Z, KNUTSON-WEDEL M, WATERLOO G, SCHRYVERS D, WALLENBERG L R. GP-zone in AI-Zn-Mg alloys and their role in artificial aging [J]. Acta Materialia, 2001, 49(17): 3443-3451.
  • 10JIANG H, FAULKNER R G. Modelling of grain boundary segregation, precipitation and preciptate-free zones of high strength aluminium alloys: I. The models [J]. Acta Materialia, 1996, 44(5): 1857-1864.

共引文献1

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部