期刊文献+

Flexible electronics and optoelectronics of 2D van der Waals materials 被引量:2

下载PDF
导出
摘要 Flexible electronics and optoelectronics exhibit inevitable trends in next-generation intelligent industries,including healthcare and wellness,electronic skins,the automotive industry,and foldable or rollable displays.Traditional bulk-material-based flexible devices considerably rely on lattice-matched crystal structures and are usually plagued by unavoidable chemical disorders at the interface.Two-dimensional van der Waals materials(2D VdWMs)have exceptional multifunctional properties,including large specific area,dangling-bond-free interface,plane-to-plane van der Waals interactions,and excellent mechanical,electrical,and optical properties.Thus,2D VdWMs have considerable application potential in functional intelligent flexible devices.To utilize the unique properties of 2D VdWMs and their van der Waals heterostructures,new designs and configurations of electronics and optoelectronics have emerged.However,these new designs and configurations do not consider lattice mismatch and process incompatibility issues.In this review,we summarized the recently reported 2D VdWM-based flexible electronic and optoelectronic devices with various functions thoroughly.Moreover,we identified the challenges and opportunities for further applications of 2D VdWM-based flexible electronics and optoelectronics.
出处 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第4期671-690,共20页 矿物冶金与材料学报(英文版)
基金 supported by the Natural Science Foundation of Beijing Municipality(No.Z180011) the National Natural Science Foundation of China(Nos.51991340,51991342,51972022,92163205,and 52188101) the National Key Research and Development Program of China(No.2016YFA0202701) the Fundamental Research Funds for the Central Universities(No.FRF-TP-19-025A3) the Overseas Expertise Introduction Projects for Discipline Innovation(No.B14003)。
  • 相关文献

参考文献15

二级参考文献69

  • 1Yang Zhao,Qiufeng Ye,Zema Chu,Feng Gao,Xingwang Zhang,Jingbi You.Recent Progress in High-efficiency Planar-structure Perovskite Solar Cells[J].Energy & Environmental Materials,2019,2(2):93-106. 被引量:1
  • 2Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.
  • 3Yin, J.; Li, X. M., Yu, J.; Zhang, Z. H.; Zlaou, J. X.; Guo, W. L. Generating electricity by moving a droplet of ionic liquid along graphene. Nat. Nanotechnol. 2014, 9, 378-383.
  • 4Stoller, M. D.; Park, S.; Zhu, Y. W.; An, J.; Ruoff, R. S. Graphene-based ultracapacitors. Nano Lett. 2008, 8, 3498-3502.
  • 5Lin, Y. M.; Dimitrakopoulos, C.; Jenkins, K. A.; Farmer, D. B.; Chiu, H. Y.; Crrill, A.; Avouris, P. 100-GHz transistors from wafer-scale epitaxial graphene. Science 2010, 327, 662.
  • 6Xia, F. N.; Mueller, T., Lin, Y. M.; Valdes-Garcia, A.; Avouris, P. Ultrafast graphene photodetector. Nat. Nano- technol. 2009, 4, 839-843.
  • 7Mueller, T., Xia, F. N., Avouris, P. Graphene photodetectors for high-speed optical communications. Nat. Photonics 2010, 4, 297-301.
  • 8Zhang, X. H.; Zhang, Y.; Liao, Q. L.; Song, Y.; Ma, S. W. Reduced graphene oxide-fimctionalized high electron mobility transistors for novel recognition pattern label-free DNA sensors. Small 2013, 9, 4045-4050.
  • 9Novoselov, K. S.; Geim, A. K., Morozov, S. V., Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197-200.
  • 10Das Sarma, S.; Adam, S.; Hwang, E. H.; Rossi, E. Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 2011, 83, 407-470.

共引文献73

同被引文献41

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部