期刊文献+

Winter soil respiration during soilfreezing process in a boreal forest in Northeast China 被引量:5

原文传递
导出
摘要 Aims Boreal forest is the largest and contains the most soil carbon among global terrestrial biomes.Soil respiration during the prolonged winter period may play an important role in the carbon cycles in boreal forests.This study aims to explore the characteristics of winter soil respiration in the boreal forest and to show how it is regulated by environmental factors,such as soil temperature,soil moisture and snowpack.Methods Soil respiration in an old-growth larch forest(Larix gmelinii Ruppr.)in Northeast China was intensively measured during the winter soilfreezing process in 2011 using an automated soil CO_(2) flux system.The effects of soil temperature,soil moisture and thin snowpack on soil respiration and its temperature sensitivity were investigated.Important Findings Total soil respiration and heterotrophic respiration both showed a declining trend during the observation period,and no significant difference was found between soil respiration and heterotrophic respiration until the snowpack exceeded 20cm.Soil respiration was exponentially correlated with soil temperature and its temperature sensitivity(Q10 value)for the entire measurement duration was 10.5.Snow depth and soil moisture both showed positive effects on the temperature sensitivity of soil respiration.Based on the change in the Q10 value,we proposed a‘freeze–thaw critical point’hypothesis,which states that the Q10 value above freeze–thaw critical point is much higher than that below it(16.0 vs.3.5),and this was probably regulated by the abrupt change in soil water availability during the soil-freezing process.Our findings suggest interactive effects of multiple environmental factors on winter soil respiration and recommend adopting the freeze–thaw critical point to model soil respiration in a changing winter climate.
机构地区 Department of Ecology
出处 《Journal of Plant Ecology》 SCIE 2013年第5期349-357,共9页 植物生态学报(英文版)
基金 National Natural Science Foundation of China(31021001) National Basic Research Program of China on Global Change(2010CB950600) Ministry of Science and Technology(2010DFA31290).
  • 相关文献

参考文献2

二级参考文献8

共引文献19

同被引文献29

引证文献5

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部