期刊文献+

Species-dependent responses of soil microbial properties to fresh leaf inputs in a subtropical forest soil in South China

原文传递
导出
摘要 Aims Forest disturbance from extreme weather events due to climate change could increase the contribution of fresh green leaves to the litter layer of soil and subsequently alter the composition and activity of the soil microbial properties and soil carbon cycling.The objective of this study was to compare the effect of naturally fallen litter and fresh leaves on the soil microbial community composition and their activities.Methods Fresh leaves and normal fallen litter were collected from four tree species(Pinus elliottii,Schima superba,Acacia mangium,A.auriculaeformis)in subtropical China and mixed with soil.Soil microbial community composition was determined using PLFAs,and its activity was quantified by soil respiration.During a 12-month period,the decomposition rate of litter was measured bimonthly using a litterbag method.Soil microbial samples were collected after 6 and 12 months.Soil respiration was measured monthly.Important Findings We found that fresh leaves decomposed faster than their conspecific fallen litter.Although total microbial biomass and bacterial biomass were similar among treatments,soil fungal biomass was higher in fresh leaf than fallen litter treatments,resulting in greater values of the Fungal phospholipid fatty acids(PLFAs)/Bacterial PLFAs ratio.Fungal PLFA values were greater for Schima superba than the other species.The effect of litter type on soil respiration was species-dependent.Specifically,fallen litter released 35%more CO_(2) than fresh leaves of the conifer P.elliottii.The opposite pattern was observed in the broadleaf species whose fresh leaf treatments emitted 17%–32%more CO_(2) than fallen litter.Given future predictions that global climate change will cause more disturbances to forests,these results indicate that conifer and broadleaf forests in subtropical China may respond differently to increased fresh litter inputs,with net soil microbial respiration decreasing in conifer forests and increasing in broadleaf forests.
出处 《Journal of Plant Ecology》 SCIE 2014年第1期86-96,共11页 植物生态学报(英文版)
基金 National Natural Science Foundation of China(30870442) National Basic Research Program of China(2009CB421101 and 2011CB403200) NSFC-Guangdong Joint Project(U1131001) Guangdong Natural Science Foundation(S2011040005712) the Knowledge Innovation Program of the Chinese Academy of Sciences(KSCX2-EW-J-28) the‘Strategic Priority Research Program-Climate Change:Carbon Budget and Related Issues’of the Chinese Academy of Sciences(XDA05070307).
  • 相关文献

参考文献5

二级参考文献49

共引文献182

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部