期刊文献+

基于Mask RCNN的绝缘子自爆缺陷检测 被引量:4

Detection of Self-explosion Defects of Insulators Based on Mask RCNN
下载PDF
导出
摘要 针对绝缘子自爆缺陷位置检测问题,提出了一种基于Mask RCNN的绝缘子自爆缺陷检测的方法。通过构造基于Mask RCNN的绝缘子串分割模型,在获取的掩模图像中引入最小外接矩形提取绝缘子串图像,从而搭建基于Mask RCNN的自爆缺陷检测模型,检测绝缘子串中的自爆位置。结合两个模型,将绝缘子串位置及其自爆缺陷位置映射到原图。该方法在绝缘子串分割模型的验证集上,平均Dice达到0.822,在自爆缺陷识别模型的验证集上,平均IOU达到0.835,最终模型对缺陷位置识别准确率达到94.12%。 Aiming at the problem of detecting the position of insulator self-explosion defect,a method of insulator self-explosion defect detection based on Mask RCNN is proposed.By constructing a segmentation model of the insulator string based on Mask RCNN,the smallest bounding rectangle is introduced into the acquired mask image to extract the image of the insulator string,so as to build a self-explosion defect detection model based on Mask RCNN to detect the self-explosion position in the insulator string.Combining the two models,the location of the insulator string and its self-explosive defect location are mapped to the original image.This method has an average Dice of 0.822 on the validation set of the insulator string segmentation model,and an average IOU of 0.835 on the validation set of the self-explosive defect recognition model.The final model has an accuracy of 94.12%for defect location recognition.
作者 汪琦 刘向阳 WANG Qi;LIU Xiang-yang(School of Science,Hohai University,Nanjing,Jiangsu 211100,China)
机构地区 河海大学理学院
出处 《计算技术与自动化》 2022年第1期52-58,共7页 Computing Technology and Automation
基金 云南省重大科技专项计划(202002AE090010) 国家自然科学基金资助项目(61001139)。
关键词 绝缘子 深度学习 Mask RCNN 自爆缺陷 insulator deep learning Mask RCNN self-explosion defect
  • 相关文献

参考文献10

二级参考文献97

共引文献260

同被引文献35

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部