期刊文献+

高阶时频变换理论与应用 被引量:1

High-order Time-frequency Transform Theory and its Applications
下载PDF
导出
摘要 非线性信号处理与特征提取是时频信号处理领域中的热点问题。传统时频分析方法受限于海森伯格不确定原则,在分析该类信号时存在较为严重的能量发散问题,导致分辨率不佳,无法为非线性信号处理与特征提取提供精确的时频信息。为改善传统时频分析方法的能量聚集性,提升其时频分辨率,提出了一种高阶同步抽取变换算法,首先计算多个短时傅立叶变换,之后用以估计高阶瞬时频率算子,并结合短时傅立叶变换谱提取信号的非线性瞬时特征,从而能够为信号中的非线性特征提供高分辨率的时频谱。仿真分析验证了提出方法在时频特征刻画、能量聚集性改善以及抑噪方面的性能。实验分析验证了提出方法能够用于复杂多分量非线性信号处理,对于信号处理理论拓展具有重要意义。 Non-stationary signal processing is always a hot topic in the signal processing fields.Traditional time-frequency analysis methods are limited by the Heisenberg uncertainty principle,which cannot provide accurate time information for highly time-varying signals.In order to improve the energy concentration of the time-frequency analysis method,a high-order synchroextracting transform is proposed.By estimating the instantaneous frequency of the signal,the proposed method can characterize the non-stationary characteristics of complex signals.Simulation analysis and experimental analysis verify the performance of the proposed method in time-frequency feature characterization and noise suppression.
作者 郑成香 路树华 徐伟 朱瑞新 ZHENG Cheng-xiang;LU Shu-hua;XU Wei;ZHU Rui-xin(People’s Hospital of Rizhao,Rizhao,Shandong 276826,China;Shandong Zhengzhong Information Technology CO.,Ltd.,Jinan,Shandong 250101,China)
出处 《计算技术与自动化》 2022年第1期72-78,共7页 Computing Technology and Automation
关键词 时频分析 信号处理 瞬时频率估计 time-frequency analysis signal processing instantaneous frequency estimation
  • 相关文献

参考文献3

二级参考文献53

  • 1毛炜,金荣洪,耿军平,李家强.一种基于改进Hilbert-Huang变换的非平稳信号时频分析法及其应用[J].上海交通大学学报,2006,40(5):724-729. 被引量:33
  • 2Mallat S, Zhang Z. Matching pursuits with time-frequency dictionaries[ J ]. IEEE Trans. on Signal Processing, 1993, 41 (12) :3397-3415.
  • 3Carmona P, Hwang W L, Torresani B. Characterization of signals by the ridges of their wavelet transform [ J ]. IEEE Trans. On Signal Processing, 1997,45 (10) :2586-2590.
  • 4Boashash B. Estimating and interpreting the instantaneous frequency of a signal. Part 1: Fundamentals [ J ]. Proc. IEEE, part I, 1992,80(4) :520-538.
  • 5Boashash B. Estimating and interpreting the instantaneous frequency of a signal. Part 2:Algorithms and applications [ J ]. Proc. IEEE, part II, 1992,80 (4) :540-568.
  • 6Tropp J A. Greed is good: Algorithmic results for sparse approximation [ J ]. IEEE Trans. on Information Theory, 2004, 50(10) :2231-2242.
  • 7Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and Hilbert spectrum for nonlinear and non- stationary time series analysis [ C ]//Proceedings of the Royal Society of London,Series A. 1998,454:903-995.
  • 8Chen Q H,Huang N E,Sherman R, et al. A B-spline approach for empirical mode decompositions [ J]. Advances in Computational Mathematics ,2006,24( 1 ) : 171-195.
  • 9Rilling G, Flandrin P, Goncalves P. On empirical mode decomposition and its algorithms [ C ]//Proceedings of the 6th IEEE/EURASIP Workshop on Nonlinear Signal and Image Processing( NSIP' 03 ). Grado, Italy ,2003.
  • 10Peng S L, Hwang W L. Adaptive signal decomposition based on local narrow band signals [ J ]. IEEE Trans. Signal Process, 2008,56 ( 7 ) : 2669-2676.

共引文献3

同被引文献15

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部