摘要
为提升船舶航行数据自动采集的实时性、完整性,并保证采集数据的质量,设计人工智能的船舶航行数据自动采集系统。数据感知设备采集船舶航行相关数据,采用卷积神经网络部署动态网络节点,利用时间反转镜方法控制网络信道的均衡程度,数据管理模块通过执行器下达执行指令,控制数据的读写、交互缓存等,并对数据实行滤波处理后,再次利用卷积神经网络获取船舶航行数据识别的关键字,并将该数据并存储至数据库中。测试结果表明:该系统的信道均衡偏差波动范围小,信道干扰率低,连通性好,能够采集多维度船舶航行数据,数据质量高;采集数据能够为船舶航行提供可靠依据。
In order to improve the real-time and integrity of ship navigation data automatic collection and ensure the quality of collected data,an artificial intelligence ship navigation data automatic collection system is designed.The data sensing device collects ship navigation related data,deploys dynamic network nodes using convolutional neural network,uses the time reversal mirror method to control the balance degree of network channel,and the data management module issues execution instructions through the actuator to control data reading and writing,interactive cache,etc.after filtering the data.Thirdly,the convolution neural network is used to obtain the key words of ship navigation data recognition,and the data is stored in the database.The test results show that the system has small fluctuation range of channel equalization deviation,low channel interference rate and good connectivity.It can collect multi-dimensional ship navigation data with high data quality;The collected data can provide a reliable basis for ship navigation.
作者
顾梦霞
GU Meng-xia(Hubei University of Technology Engineering and Technology College,WuHan 430068,China)
出处
《舰船科学技术》
北大核心
2022年第3期67-70,共4页
Ship Science and Technology
关键词
人工智能
船舶航行数据
自动采集系统
动态网络节点
均衡程度
数据识别
artificial intelligence
ship navigation data
automatic acquisition system
dynamic network node
equilibrium degree
data to identify