期刊文献+

印记基因与细胞重编程 被引量:1

Imprinted Genes and Cell Reprogramming
下载PDF
导出
摘要 细胞重编程可使分化的体细胞逆转回到全能性状态,或形成胚胎干细胞系,或进一步发育成一个新个体,开启了生物学中细胞可塑性研究的新领域。目前细胞重编程技术已逐渐成熟,但对于细胞重编程中的内部变化的具体机理仍然知之甚少。本文特别综述了印记基因在胚胎发育中的变化及作用,探讨了细胞重编程过程中印记基因的意义及在重编程过程中的变化规律,以期人们从细胞内部变化的角度更加准确和充分地认识与理解细胞重编程过程,使之更加安全的应用于畜牧兽医研究领域,为家畜育种以及动物疾病防控提供新的思路。 Cell reprogramming can reverse differentiated somatic cells back to a totipotent state, or form embryonic stem cell lines, or further develop into a new individual. This opens up a new field of research on cellular plasticity in biology. At present, cell reprogramming technology has gradually matured, but the specific mechanism of internal changes in cell reprogramming is still poorly understood. In this paper, the changes and roles of imprinted genes in embryonic development are reviewed, and the significance of imprinted genes in the process of cell reprogramming and the changes in the process of reprogramming are discussed. It is expected that people will more accurately and fully understand and understand the process of cell reprogramming from the perspective of internal changes in cells, so that it can be more safely applied in the field of animal husbandry and veterinary research, and provide new ideas for livestock breeding and animal disease prevention and control.
作者 田佳卉 陈昱光 胡建宏 雷安民 TIAN Jia-hui;CHEN Yu-guang;HU Jian-hong;LEI An-min(College of animal science and technology,Northwest A&F University,Yangling 712100,China;Collage of Veterinary Medicine,Northwest A&F University)
出处 《畜牧兽医杂志》 2022年第3期30-33,36,共5页 Journal of Animal Science and Veterinary Medicine
基金 抗病高产转基因猪新品种培育,2016ZX08006-003。
关键词 印记基因 细胞重编程 体细胞克隆 imprinted gene cell reprogramming somatic cell clones
  • 相关文献

参考文献2

二级参考文献77

  • 1[1]DeChiara T M, Robertson E J, Efstratiadis A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell, 1991, 64: 849~859.
  • 2[2]Bartolomei M S, Zemel S, Tilghman S M. Parental imprinting of mouse H19 gene. Nature, 1991, 351: 153~155.
  • 3[3]Barton S C, Surani M A H, Norris M, L. Role of paternal and maternal genomes in mouse development. Nature, 1984, 311: 374~376.
  • 4[4]Surani M A H, Barton S C, Norris M L. Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature, 1984, 308: 548~550.
  • 5[5]Barlow D P, Sroger R, Hermann B G, et al. The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus. Nature, 1991, 349: 84~87.
  • 6[6]Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science, 2001, 293: 1089~1093.
  • 7[7]Reik W, Walter J. Genomic imprinting: parental influence on the genome. Nature Reviews (Genetics), 2001, 2: 21~32.
  • 8[8]Killian J K, Byrd J C, Jirtle J V, et al. M6P/IGF2R imprinting evolution in mammals. Mol Cell, 2000, 5: 707~716.
  • 9[9]Alleman M, Doctor J. Genomic imprinting in plants: observation and evolutionary implications. Plant Mol Biol, 2000, 43: 147~161.
  • 10[10]Nolan M C, Killian J K, Petitte J N, et al. Imprint status of M6P/IGF2R and IGF2 in chickens. Dev Genes Evol, 2001, 211: 179~183.

共引文献5

同被引文献20

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部