期刊文献+

利用CNN和小波变换的室内定位信号识别 被引量:2

Indoor positioning signal recognition using CNN and wavelet transform
下载PDF
导出
摘要 在超宽带(UWB)室内定位系统中,采用时域特征识别非视距信号(NLOS)不能达到令人满意的性能。为了解决这一问题,利用小波变换方便同时提取时频域特征的特点,提出了一种基于连续小波变换和卷积神经网络(CWT-CNN)的NLOS识别方法。仿真实验使用一个网络开源数据集。仿真结果表明,对于6种不同的室内场景,NLOS信号识别准确率分别为87.50%、84.50%、88.00%、87.00%、90.50%和88.50%,CWT-CNN能够较好的识别时频域内的NLOS信号。 In the ultra wide band(UWB) indoor positioning system, using time-domain features to identify non-line-ofsight(NLOS) signals cannot achieve satisfactory performance. In order to solve this problem, taking advantage of the fact that wavelet transform facilitates simultaneous extraction of features in the time-frequency domain, this paper proposes a NLOS recognition method based on continuous wavelet transform and convolutional neural network(CWTCNN). The simulation experiment uses an open network source data set. The simulation results show that in six different indoor scenes, the accuracy of NLOS signal recognition is 87.50%, 84.50%, 88.00%, 87.00%, 91.00% and 90.00%respectively and that CWT-CNN can better identify NLOS signal in the time-frequency domain.
作者 张忠健 席志红 ZHANG Zhongjian;XI Zhihong(College of Information and Communication Engineering,Harbin Engineering University,Harbin 150001,China)
出处 《应用科技》 CAS 2022年第2期81-86,共6页 Applied Science and Technology
关键词 室内定位 超宽带 非视距信号识别 连续小波变换 深度学习 卷积神经网络 支持向量机 特征可视化 indoor positioning ultra wide band non-line-of-sight signal recognition continuous wavelet transform deep learning convolutional neural network(CNN) support vector machine(SVM) feature visualization
  • 相关文献

参考文献1

二级参考文献1

共引文献4

同被引文献7

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部