摘要
异常用电行为的时频特性往往具有强随机不确定性,而固定参数相关的分析方法无法有效处理此类数据。为此,本文提出了一种基于经验模式分解(EMD)的异常用电检测方法。首先,针对用电数据的不同特点进行初步筛选,进而采用EMD方法对用户用电量和线损电量序列进行自适应分解,提取EMD分解所得高频分量,通过对其变化趋势和相关性进行分析,标定异常用电行为。结合实际案例的分析比对,验证了该方法的有效性。
Time-frequency characteristics of abnormal electricity consumption data have strong randomness and uncertainty. So the methods related to fixed parameters are not good at handling such data. To solve the problem, a detection method of abnormal electricity consumption based on empirical mode decomposition(EMD) is proposed in this paper. Preliminary screening for different characteristics of electricity consumption data is done first. Then the electricity consumption and line loss power sequences are decomposed self-adaptively by using the EMD method. The change trend and correlation of high-frequency components obtained by EMD decomposition are analyzed, and thus the abnormal electricity consumption is calibrated. Comparative analysis with actual cases verifies that the proposed method is proved to be effective in detecting the abnormal electricity consumption.
作者
舒一飞
刘兴杰
康洁莹
刘鹏
樊博
SHU Yifei;LIU Xingjie;KANG Jieying;LIU Peng;FAN Bo(Marketing Service Department,State Grid Ningxia Electeic Power Co.Ltd.,Yinchuan 750002,China;Department of Power Engineering and its Automation,Ningxia University,Yinchuan 750021,China)
出处
《应用科技》
CAS
2022年第2期94-99,共6页
Applied Science and Technology
基金
国家自然科学基金项目(61763040)。
关键词
时频特性
经验模式分解
异常用电
检测
用电量
线损
高频分量
相关性
time-frequency characteristics
EMD
abnormal electricity consumption
detection
electricity consumption
line loss
high-frequency components
correlation