期刊文献+

周期排列抛物形系列沟槽引起的线性水波Bragg共振及共振相位上移 被引量:2

Bragg Resonance and Phase Upshift of Linear Water Waves Excited by a Finite Periodic Array of Parabolic Trenches
下载PDF
导出
摘要 该文解析研究了有限个周期排列的抛物形沟槽激发的水波Bragg共振.首先,利用变量替换,先将系数为隐函数的修正缓坡方程(MMSE)转化为系数为显函数的显式方程.然后,构造了修正缓坡方程的Frobenius级数解,并给出了级数解的收敛条件.最后,利用质量守恒的耦合条件,建立了反射系数的解析公式.根据反射系数的解析公式,分析了沟槽个数、沟槽深度与宽度对Bragg共振峰值、共振相位和共振带宽的影响.当沟槽深度和宽度固定而沟槽个数增加时,共振峰值逐渐增大并趋向于1,而共振带宽则逐渐变窄并趋于固定值.当沟槽个数和宽度固定时,Bragg共振峰值随沟槽深度增加而增加.当沟槽个数和深度固定时,Bragg共振反射峰值随沟槽宽度增加而先增后减,预示了沟槽存在某个宽度使得共振峰值达到最大,为Bragg共振反射针对沟槽宽度的优化奠定了理论基础.特别地,前不久在有限个周期排列旋轮线形沟槽上刚刚观察到的Bragg共振反射峰值相位的上移现象,再次在该文考虑的抛物形沟槽上得到确认,表明针对有限周期排列的沟槽地形,Bragg共振反射峰值的相位上移是一个普遍现象.也因此说明,凡是正弦沙纹和周期人工沙坝所激发的Bragg共振反射,其主振相位将会下移,而凡是周期系列沟槽所激发的Bragg共振反射,无论沟槽形状如何,其主振相位都将上移.另外,我们从Bragg共振的原始定义出发,定量地解释了相位上移发生的数学机理. The Bragg resonant reflection excited by a finite periodic array of parabolic trenches was analytically studied.First,the modified mild-slope equation(MMSE)with implicit coefficients was transformed into an ordinary differential equation with explicit coefficients through variable substitution.Second,an analytical solution to the MMSE was established in terms of the Frobenius series,and the convergence condition for the series solution was given.Finally,by means of the mass-conservation matching conditions,an analytical formula for the reflection coefficient was built.With the analytical formula,the effects of the number,the depth and the width of trenches on the peak value,the phase and the band width of the resonance,were investigated.The results show that,when the depth and width of trenches keep constant,and the number of trenches increases,the Bragg resonance peak value will increase up to 1,while the resonance bandwidth will narrow down and approach a fixed value.When the number and width of trenches keep constant,the Bragg resonance peak value will increase with the depth of trenches.When the number and depth of trenches keep constant,the Bragg resonance peak value will increase at first and then decrease with the width of trenches,which implies that there exists a certain width of trenches to make the Bragg resonance peak value reach the maximum,laying a theoretical base for the optimization of Bragg resonance vs.the trench width.Particularly,the phase upshift of the Bragg resonance wave reflection peak value recently observed over finite periodically arranged cycloidal trenches,was confirmed again over the parabolic trenches.That implies that,the phase upshift of the Bragg resonance reflection peak value is a common phenomenon excited by finite periodic trenches with arbitrary cross sections.Consequently,for sinusoidal ripples and periodic artificial bars,the phase of the Bragg resonance reflection will shift downward,while for an array of periodic trenches,regardless of the shape of the trench cross section,the phase of the Bragg resonance reflection will shift upward.In addition,starting from the initial definition of the Bragg resonance,the mathematical mechanism of the phenomenon of phase upshift is well explained.
作者 潘俊杰 刘焕文 李长江 PAN Junjie;LIU Huanwen;LI Changjiang(School of Naval Architecture and Maritime,Zhejiang Ocean University,Zhoushan,Zhejiang 316022,P.R.China;Zhejiang Weihao Engineering Technology Co.,Ltd.,Zhoushan,Zhejiang 316000,P.R.China)
出处 《应用数学和力学》 CSCD 北大核心 2022年第3期237-254,共18页 Applied Mathematics and Mechanics
基金 国家自然科学基金(11572092,51879237) 浙江省高校“钱江学者”人才基金。
关键词 修正缓坡方程 抛物线形沟槽 级数解 Bragg共振反射 相位下移 相位上移 modified mild-slope equation parabolic trench series solution Bragg resonant reflection phase downshift phase upshift
  • 相关文献

参考文献2

二级参考文献79

  • 1许泰文,张宪国,蔡立宏.Bragg Reflection of Waves by Different Shapes of Artificial Bars[J].China Ocean Engineering,2002,17(3):343-358. 被引量:6
  • 2CHO Y.-S., LEE C. Resonant reflection of waves over sinusoidally varying topographies[J]. Journal of Coastal Research, 2000, 16(3): 870-876.
  • 3LIU H., YANG J. and LIN P. An analytic solution to the modified mild-slope equation for wave propagation over one-dimensional piecewise smooth topographies[J]. Wave Motion, 2012, 49(3): 445-460.
  • 4YU J .? HOWARD L. N. Exact floquet theory for waves over arbitrary periodic topographies [J]. Journal of Fluid Mechanics, 2012, 712: 451-470.
  • 5YU J., ZHENG G. Exact solutions for wave propagation over a patch of large bottom corrugations[J]. Journal of Fluid Mechanics, 2012, 713: 362-375.
  • 6CHO Y.-S., YOON S. B. and LEE J.-T. et al. A concept of beach protection with submerged breakwaters[J]. Journal of Coastal Research, 2001, 34(Special Issue): 671-678.
  • 7HSU Tai-Wen, CHANG Hsien-Kuo and TSAI Li-Hung. Bragg reflection of waves by different shapes of artificial bars[J]. China Ocean Engineering, 2002, 16(1): 21-30.
  • 8CHO Y.-S., LEE J.-I. and KlM Y.-T. Experimental study of strong reflection of regular water waves over submerged breakwaters in tandem [J]. Ocean Engineering, 2004, 31(10): l325-l335.
  • 9JEON C.-H. and CHO Y.-K. Bragg reflection of sinusoidal waves due to trapezoidal submerged breakwaters[J]. Ocean Engineering, 2006, 33(14-15): 2067-2082.
  • 10TSAI L.-H., HSU T.-W. and LEE C.-Y. Bragg reflection of water waves over tripe composites of rectangular bars[C]. Proceedings of the Twenty-first (2011) International Offshore and Polar Engineering Conference. Maui, Hawaii, USA, 2011, 896-902.

共引文献7

同被引文献5

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部