摘要
研究了具有空变系数源项的半线性Moore-Gibson-Thompson(MGT)方程Cauchy问题解的爆破现象.在次临界情形下,通过选择合适的能量泛函和测试函数,运用迭代方法和一些微分不等式技巧,得到了其Cauchy问题解的非全局存在性.进一步导出了其Cauchy问题解的生命跨度的上界估计.
Blow-up of solutions to semilinear Moore-Gibson-Thompson(MGT)equations with space-dependent coefficients and source terms was studied.Under subcritical conditions,through selection of suitable energy functionals and test functions,and with an iteration method and some differential inequality techniques,the nonexistence of global solutions to the Cauchy problem was obtained.Furthermore,the upper bound estimate of the solutions of the lifespan was derived.
作者
欧阳柏平
OUYANG Baiping(Guangzhou Huashang College,Guangzhou 511300,P.R.China)
出处
《应用数学和力学》
CSCD
北大核心
2022年第3期353-362,共10页
Applied Mathematics and Mechanics
基金
国家自然科学基金(11371175)
广东省普通高校创新团队项目(2020WCXTD008)
广州市哲学社会科学发展“十三五”规划课题(2019GZGJ209)。