摘要
提出一种基于单通道脑电数据的睡眠自动分期方法。利用多个并行的卷积操作学习脑电的多尺度空间特征,使用长短期记忆网络挖掘局部时不变特征中的时间信息。针对类别不平衡问题,采用时移滚动方法和加权交叉熵损失函数。在公开数据集Sleep-EDF上的实验结果表明,所提方法仅使用单通道数据实现了端到端的高效睡眠自动分期,缓解了不平衡数据集的分类问题。
An automatic sleep staging method based on the single-channel electroencephalogram data was proposed.Multiple parallel convolutional operations were employed to learn electroencephalogram multi-scale spatial features,and long-short term memory networks were used to mine temporal information in local time-invariant features.To treat the class imbalance problem,a time-shifted rolling method and a weighted cross-entropy loss function were applied.The results on the public dataset Sleep-EDF showed that the proposed method achieved efficient end-to-end automatic sleep staging using only single-channel data and alleviated the classification problem of unbalanced datasets.
作者
陶雨洁
杨云
TAO Yujie;YANG Yun(School of Software, Yunnan University, Kunming 650504, China;Kunming Key Laboratory of Data Science and Intelligent Computing, Kunming 650504, China;Yunnan Key Laboratory of Data Science and Intelligent Computing,Kunming 650504, China)
出处
《郑州大学学报(理学版)》
北大核心
2022年第3期40-44,共5页
Journal of Zhengzhou University:Natural Science Edition
基金
国家自然科学基金项目(61663046,61876166)。
关键词
睡眠分期
单通道
脑电图
类别不平衡
端到端
sleep staging
single-channel
electroencephalogram
class imbalance
end-to-end