摘要
介绍了分配格上可逆矩阵A所满足的条件,给出了A的行列正交性、1分解性以及An的不等式性质和等式性质,举例说明了A的行列式可以表示为A的任意k行元素的k阶子式和它们的余子式乘积之和.
The conditions satisfying the invertible matrix A on the distributive lattice are introduced.The orthogonality of ranks and columns,the factorization of 1 and the inequality and equality properties of An are given.It is illustrated that the determinant of A can be expressed as the sum of the product of k-th order subforms of any k row elements of A and their remainders.
作者
刘月明
吴妙玲
张晴
LIU Yueming;WU Miaoling;ZHANG Qing(School of science,Inner Mongolia university of technology,Hohhot 010051,China)
出处
《内蒙古工业大学学报(自然科学版)》
2022年第1期1-5,共5页
Journal of Inner Mongolia University of Technology:Natural Science Edition
基金
内蒙古自治区十三五规划项目(NGJGH2020055)。
关键词
分配格
可逆矩阵
k阶子式
distributive lattice
invertible matrix
k-th order subexpressions