期刊文献+

基于深度学习的流场时程特征提取模型 被引量:8

Flow feature extraction models based on deep learning
下载PDF
导出
摘要 特征识别是流体力学的重要研究方向,然而在中高雷诺数情况下物体的尾流流场复杂,难以通过传统方法实现特征的提取与识别.深度学习理论与技术的不断发展为复杂流场特征的识别提供了新方法.基于流场时程数据的深度学习模型,本文研究了4种模型对尾流场特征提取与识别的精度,得到了针对流场时程特征提取的高精度新方法.结果表明:所提出的模型能够识别尾流物理时程的不同特征,并通过流场时程实现了目标的外形识别,验证了方法的可行性;同时结果表明基于卷积运算的深度学习模型精度高,适用于流场时程数据的特征分析;深度学习网络结构更深、层间结构复杂的残差卷积网络识别精度最高,是尾流时程分析的高精度算法.本文所提方法从流场物理量时程的角度对流场特征进行了提取与识别,证明了深度学习方法具有较高的识别精度,是研究流场特征的重要途径. Extraction and recognition of the features of flow field is an important research area of fluid mechanics.However,the wake flow field of object immersed in fluid is complicated in the case of medium-and highReynolds number,thus it is difficult to extract and recognize the key features by using traditional physical models and mathematical methods.The continuous development of deep learning theory provides us with a new method of recognizing the complex flow features.A new method of extracting the features of the flow time history is proposed based on deep learning in this work.The accuracy of four deep learning model for feature recognition is studied.The results show that the proposed model can identify different characteristics of the wake time history and object shapes accurately.Some conclusions can be obtained below(ⅰ)The model based on convolutional layers has higher accuracy and is suitable for analyzing the features of flow time history data.(ⅱ)The residual convolutional network,with a deeper structure and more complex inter-layer structure,has highest accuracy for feature recognition.(ⅲ)The proposed method can extract and recognize the flow features from the perspective of physical quantities time history,which is a high-accuracy method,and it is an important new way to study the features of flow physical quantities.
作者 战庆亮 葛耀君 白春锦 Zhan Qing-Liang;Ge Yao-Jun;Bai Chun-Jin(College of Transportation and Engineering,Dalian Maritime University,Dalian 116026,China;State Key Laboratory for Disaster Reduction in Civil Engineering,Tongji University,Shanghai 200092,China)
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2022年第7期219-228,共10页 Acta Physica Sinica
基金 国家自然科学基金(批准号:51778495,51978527) 桥梁结构抗风技术交通行业重点实验室(上海)开放课题(批准号:KLWRTBMC21-02) 辽宁教育厅研究计划(批准号:LJKZ0052)资助的课题。
关键词 流场特征提取 深度学习 流场时程 残差卷积网络 特征识别 flow feature extraction deep learning flow time history residual convolution network feature identification
  • 相关文献

参考文献9

二级参考文献65

  • 1罗振兵,夏智勋.合成射流技术及其在流动控制中应用的进展[J].力学进展,2005,35(2):221-234. 被引量:105
  • 2杨占华,杨燕.SOM神经网络算法的研究与进展[J].计算机工程,2006,32(16):201-202. 被引量:78
  • 3姜华,席光.对流项二次迎风插值格式在非结构化网格中的应用[J].西安交通大学学报,2006,40(11):1246-1249. 被引量:4
  • 4符松,王亮.湍流转捩模式研究进展[J].力学进展,2007,37(3):409-416. 被引量:46
  • 5PARNAUDEAU P, CARLIER J, HEITZ D, et al. Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3 900 [ J ]. Physics of Fluids (1994-present) , 2008, 20(8): 85-101.
  • 6ONG L, WALLACE J. Tile velocity field of the turbulent very. near wake of a circular cylinder [ J ]. Experiments in Fluids, 1996, 20(6): 441-453.
  • 7LOURENCO L M , SIHH C. Characteristics of the plane turbulent neat" wake of a circular cylinder: A particle image velocimetry study[ Z ]. Private Communication ( data taken from [8] ) ,1993.
  • 8DONG S, KARNIADAKIS G, EKMEKCI A, et al. A combined direct numerical simulation-particle image velocimetry study of the turbulent near wake [ J ]. Journal of Fluid Mechanics, 2006, 569( 1 ) : 185-207.
  • 9BEAUDAN P, MOIN P. Numerical experiments on the flow past a circular cylinder at sub-critical Reynolds number [ R]. Stanfird : Stanfird University, 1994.
  • 10KRAVCHENKO A G, MOIN P. Numerical studies of flow over a circular cylinder at ReD = 3 900 [ J ]. Physics of Fluids, 2000, 12(2): 403-417.

共引文献152

同被引文献52

引证文献8

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部