期刊文献+

A NOTE ON MEASURE-THEORETIC EQUICONTINUITY AND RIGIDITY

下载PDF
导出
摘要 Given a topological dynamical system(X,T)and a T-invariant measureμ,let B denote the Borel σ-algebra on X.This paper proves that(X,B,μ,T)is rigid if and only if(X,T)isμ-A-equicontinuous in the mean for some subsequence A of N,and a function f∈L^(2)(μ)is rigid if and only if f is μ-A-equicontinuous in the mean for some subsequence A of N.In particular,this gives a positive answer to Question 4.11 in[1].
作者 Chiyi LUO Yun ZHAO 罗炽逸;赵云(School of Mathematical Sciences and Center for Dynamical Systems and Differential Equations,Soochow University,Suzhou 215006,China)
出处 《Acta Mathematica Scientia》 SCIE CSCD 2022年第2期769-773,共5页 数学物理学报(B辑英文版)
基金 Supported by the National Natural Science Founda-tion of China(11790274 and 11871361) partially supported by Qinglan project of Jiangsu Province。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部