期刊文献+

Q型静态混合器内液滴群分散特性 被引量:5

Dispersion characteristics of droplets in the Q-type static mixer
原文传递
导出
摘要 静态混合器因具有结构紧凑、强化性能优异和连续性生产等优点被广泛应用于过程工业中,但Q型静态混合器(QSM)内多相流分散混合强化机理不完善制约了其在精细化工和原料药绿色生产中的应用。采用计算流体力学(CFD)耦合群体平衡方程对QSM内相含率α≤5%时液滴分散特性进行数值模拟,分析液液界面张力、动力黏度和相含率对液滴群d_(32)的分散行为的影响。标准旋流静态混合器内的d_(32)数值预测结果与实验结果有良好的一致性。模拟结果表明,在z/l=11.5处不同分散相d_(32)减小73%~96%,RL-90-QSM对不同物性介质的分散混合具有高效性和普适性;在高雷诺数和低相含率下,不同分散相流过z/l=0~2时d_(32)破碎速率最大,在z/l=2.5处d_(32)减小51%~90%,d_(32)随混合时间的增加逐渐减小且在z/l=10后趋于稳定;界面张力对混合结果的影响大于动力黏度。 Static mixer is widely used in the process industry due to their advantages of compact structure,excellent intensification performance and continuous production.The enhancement mechanism of multiphase flow and dispersion mixing in Q-type static mixer(QSM)are not adequate,which restricts its application in green production of fine chemicals and green production of active pharmaceutical ingredient.The computational fluid dynamics(CFD)coupled with the population balance equation are used to simulate the flow and dispersion performance of droplets in the QSM.The discrete interval number of droplet size in the class method(CM)is set as 16 groups.The numerical simulation result in the classical helical static mixer has a good agreement with the experimental results.The dispersive mixing performance of different medium in RL-90-QSM are studied under Re=8000~24000.The effects of dynamic viscosity,interfacial tension,and phase volume fraction on the Sauter mean diameter(d_(32))are analyzed,respectively.The Q-type elements have good functions of splitting,recombination,and stretching.At higher Reynolds number and lower phase volume fraction,the average d_(32)values at different cross section obviously decrease in the first group of elements and then gradually decrease with the increase of mixing time.They become stable after z/l=10.The decreasing ratio of d_(32)at z/l=11.5 of benzene,toluene,cyclohexane and silicone oil 50 relative to the inlet droplet diameter(2.50 mm)are in the range of 78%~95%,80%~96%,73%~94%and 82%~96%,respectively.RL-90-QSM has the advantage of high efficiency and universality for dispersion mixing for the medium with different physical properties.The dispersion performance of droplets in liquid-liquid two phase flow with different continuous phase viscosities and discrete phase viscosities is similar.Compared with dynamic viscosity of discrete phase,the interfacial tension has much more influence on the final mixing result.As far as the restrained aggregation be concerned,the breakup performance of droplets is still predominant at dispersed phase volume fraction no more than 5%.
作者 孟辉波 王建宝 禹言芳 王宗勇 吴剑华 Huibo MENG;Jianbao WANG;Yanfang YU;Zongyong WANG;Jianhua WU(Liaoning Key Laboratory of Chemical Technology for Efficient Mixing,Shenyang University of Chemical Technology,Shenyang,Liaoning 110142,China)
出处 《过程工程学报》 CAS CSCD 北大核心 2022年第3期338-346,共9页 The Chinese Journal of Process Engineering
基金 辽宁特聘教授计划项目(编号:辽教函[2018]35号) 国家自然科学基金面上项目(编号:21476142) 沈阳市中青年科技创新人才支持计划项目(编号:RC200032) 辽宁省教育厅项目(编号:LQ2019003) 辽宁省“百千万人才工程”项目(编号:201892151) 辽宁省自然科学基金项目(编号:2019-ZD-0082)。
关键词 Q型静态混合器 两相流 群体平衡模型 液滴尺寸分布 索特平均直径 Q-type static mixer two-phase flow PBM droplet size distribution Sauter mean diameter
  • 相关文献

参考文献5

二级参考文献69

  • 1龚斌,吴剑华,王宗勇,张春梅,金丹.SK型静态混合器流体湍流时传热性能的研究[J].高校化学工程学报,2008,22(3):384-388. 被引量:13
  • 2张春梅,吴剑华,龚斌.SK型静态混合器流体湍流阻力的研究[J].化学工程,2006,34(10):27-30. 被引量:28
  • 3王杨君,邓先和,李志武.旋流片支撑缩放管管束的复合强化传热[J].化工学报,2007,58(9):2190-2193. 被引量:8
  • 4Weber M W, Shandas R. Computational Fluid Dynamics Analysis of Microbubble Formation in Microfluidic Flow-focusing Devices [J]. Microfluid Nanofluid, 2007, 3(2): 195-206.
  • 5Abrahamse A J, Van der Padt, Boom R M, et al. Process Fundamentals of Membrane Emulsification: Simulation with CFD [J]. AIChE J., 2001, 47(6): 1285-1291.
  • 6Ohta M, Yamamoto M, Suzuki M. Numerical-analysis of a Single Drop Formation Process under Pressure Pulse Condition [J]. Chem. Eng. Sci., 1995, 50(18): 2923-2931.
  • 7Osher S, Sethian J A. Fronts Propagating with Curvature-dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations [J]. J. Comput. Phys., 1988, 79(1): 12-49.
  • 8Sussman M, Smereka P, Osher S. A Level Set Approach for Computing Solutions to Incompressible Two-phase Flow [J]. J. Comput. Phys., 1994, 114(1): 146-159.
  • 9Chang Y C, Hou T Y, Merriman B, et al. A Level Set Formulation ofEulerian Interface Capturing Methods for Incompressible Fluid Flows [J]. J. Comput. Phys., 1996, 124(2): 449-464.
  • 10De Menech M. Modeling of Droplet Breakup in a Microfluidic T-shaped Junction with a Phase-field Model [J]. Phys. Rev. E., 2006, 73(3): 031505.

共引文献26

同被引文献38

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部