期刊文献+

具有周期边界条件的两个Sturm-Liouville问题的交叉谱

Intersection of Spectrum for Two Sturm-Liouville Problems with Periodic Boundary Conditions
下载PDF
导出
摘要 为研究具有周期边界条件的两个Sturm-Liouville (SL)问题的交叉谱个数,构造一个二维向量SL问题使两个一维SL问题的谱集与该二维向量SL问题的谱集相同,计算出二维SL问题的二重特征值的一个上界MQ,得出二维SL问题的大于MQ的特征值都是单特征值,且只有有限个非单特征值;利用一维SL问题与二维向量SL问题谱集之间的关系,得出具有周期边界条件的两个一维SL问题交叉谱(相同特征值)的个数是有限的,得到具有周期边界条件的一维SL问题的二重特征值个数也是有限的,同时计算出最大二重特征值的上界估计。 In order to study the intersection of the spectra for two Sturm-Liouville(SL) problems with periodic boundary conditions(BCs), a two-dimensional vectorial SL problem is constructed. In this question the spectral sets of two one-dimensional SL problems are equal to the spectral sets of the two-dimensional vectorial SL problem.Then an upper bound MQof the double eigenvalues of the two-dimensional SL problem is calculated. It is concluded that the eigenvalues greater than MQof two-dimensional SL problem are single eigenvalues, and there are only a limited number of non single eigenvalues. Using the relationship between the spectral set of one-dimensional SL problem and two-dimensional vectorial SL problem, it is obtained that the number of cross spectra(same eigenvalues) of two one-dimensional SL problems with periodic BCs is limited, and the number of double eigenvalues of one-dimensional SL problem with periodic BCs is also limited. At the same time, the upper bound estimation of the maximum double eigenvalues is calculated.
作者 张艳霞 刘畅 ZHANG Yanxia;LIU Chang(School of Mathematics&Physics,Anhui University of Technology,Maanshan 243032,China;School of Computer Science&Technology,Anhui University of Technology,Maanshan 243032,China)
出处 《安徽工业大学学报(自然科学版)》 CAS 2022年第2期202-209,共8页 Journal of Anhui University of Technology(Natural Science)
基金 安徽省高校自然科学基金项目(TZJQR002-2021)。
关键词 向量Sturm-Liouville问题 特征值 重数 势函数 vectorial Sturm-Liouville problem eigenvalue spectrum multiplicity potential function
  • 相关文献

参考文献1

二级参考文献23

  • 1Zakhariev B N, Suzko A A. Direct and Inverse Problems [M]. Berlin: Springer, 1990.
  • 2Gesztesy F, Holden H. On trace formulas for SchrSdinger-type operators [J]. Multiparticle Quantum Scattering with Applications to Nuclear, Atomic and Molecular Physics, IMA Vol. Math. Appl. 89, New York: Spring, 1977: 121-145.
  • 3Papanicolaou V G. Trace formulas and the behaviour of large eigenvalues [J]. SIAM J Math Anal, 1995, 26: 218-237.
  • 4Carlson R. Eigenvalue estimates and trace formulas for the matrix Hill's equation [J]. J Diff Equations, 2000, 167: 211-244.
  • 5Carlson R. Large eigenvalues and trace formulas for matrix Sturm-Liouville problems [J]. SIAM J Math Anal, 1999, 30: 949-962.
  • 6Chern Huahuai. On the eigenvalues of some vectorial Sturm-Liouville eigenvalue problems [J]. Eprint ArXiv: math/990219, 1999.
  • 7Ambarzumyan V A. 0ber eine Frage der Eigenwerttheorie [J]. Z Phys, 1929, 53: 690-695.
  • 8Borg G. Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe, Bestimmung der Differential gleichung durch die Eigenwerte [J]. Acta Math, 1946, 78: 1-96.
  • 9Borg G. Uniqueness theorems in the spectral theory of y''+ (A - q(x))y = 0 [C]//Proc. 11th Scandinavian Congress of Mathematicians (Oslo: Johan Grundt Tanums Forlag), 1952: 276-287.
  • 10Hochstadt H, Lieberman B. An inverse Sturm-Liouville problem with mixed given data [J]. SIAM J Appl Math, 1978, 34: 676-680.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部