期刊文献+

Effects of precipitation on soil organic carbon fractions in three subtropical forests in southern China 被引量:6

原文传递
导出
摘要 Aims The aim of this study was to investigate the effects of precipitation changes on soil organic carbon(SOC)fractions in subtropical forests where the precipitation pattern has been altered for decades.Methods We conducted field manipulations of precipitation,including ambient precipitation as a control(CK),double precipitation(DP)and no precipitation(NP),for 3 years in three forests with different stand ages(broadleaf forest[BF],mixed forest[MF]and pine forest[PF])in subtropical China.At the end of the experiment,soil samples were collected to assay SOC content,readily oxidizable organic carbon(ROC)and non-readily oxidizable organic carbon(NROC),as well as soil microbial biomass carbon(MBC),pH and total nitrogen content.Samples from the forest floors were also collected to analyze carbon(C)functional groups(i.e.alkyl C,aromatic C,O-alkyl C and carbonyl C).Furthermore,fine root biomass was measured periodically throughout the experiment.Important Findings Among the forests,ROC content did not exhibit any notable differences,while NROC content increased significantly with the stand age.This finding implied that the SOC accumulation observed in these forests resulted from the accumulation of NROC in the soil,a mechanism for SOC accumulation in the mature forests of southern China.Moreover,NP treatment led to significant reductions in both ROC and NROC content and therefore reduced the total SOC content in all of the studied forests.Such decreases may be due to the lower plant-derived C inputs(C quantity)and to the changes in SOC components(C quality)indicated by C functional groups analyses under NP treatment.DP treatment in all the forests also tended to decrease the SOC content,although the decreases were not statistically significant with the exception of SOC and ROC content in PF.This finding indicated that soils in MF and in BF may be more resistant to precipitation increases,possibly due to less water limitations under natural conditions in the two forests.Our results therefore highlight the different responses of SOC and its fractions to precipitation changes among the forests and suggest that further studies are needed to improve our understanding of SOC dynamics in such an important C sink region.
出处 《Journal of Plant Ecology》 SCIE 2016年第1期10-19,共10页 植物生态学报(英文版)
基金 the Strategic Priority Research Program-Climate Change:Carbon Budget and Relevant Issues of the Chinese Academy of Sciences(XDA05050205) National Basic Research Program of China(2009CB421101) National Natural Science Foundation of China(NSFC-31400415) Guangdong Provincial Natural Science Foundation of China(8351065005000001),the Dinghushan Forest Ecosystem Research Station.
  • 相关文献

参考文献3

二级参考文献6

共引文献125

同被引文献94

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部