期刊文献+

基于LMD形态滤波的LS-SVM方法研究 被引量:4

There Search of LS-SVM Based on LMD Morphology Filter
下载PDF
导出
摘要 在轴承的故障诊断中,为了解决核函数在最小二乘支持向量机中参数选择困难及稀疏性差的问题,提出了局部均值分解(LMD)形态滤波的最小二乘支持向量机(LS-SVM)方法。该方法首先利用LMD对信号进行分解得到PF分量,并对信号做相关分析去除虚假分量,形态滤波降噪后再进行LMD分解得到新PF分量,提取能量特征;其次,对LS-SVM的核函数进行改进,解决核参数选择的问题;应用特征加权法对拉格朗日参数进行特征加权,取其加权平均值作为剪枝方法的阈值,降低稀疏性;最后将能量特征信号输入LS-SVM中,对信息进行训练预测。实验表明,应用该方法能快速有效地对轴承故障信号进行自适应的分类及轴承故障的判断。 In the diagnosis of bearing,the LS-SVM method research with LMD morphological filtering was put out in order to solve the problem about the kernel function parameter selection and the bad sparsity of least squares vector machine(LS-SVM).First,the LMD was used to decompose the measured signal and PF components were obtained.The correlation analysis was carried out to remove the false components,and the noise of PF components was reduced by morphological filtering.The LMD decomposed the recombinational signal and obtained new PF components,and energy characteristics were got from the new PF component.Secondly,the kernel function of LS-SVM is improved to solve the problem of kernel parameter selection.Lagrange parameters were weighted by feature weighting method,and their weighted average value was taken as the threshold of pruning method to reduce the sparsity.Finally,energy characteristics were put into LS-SVM to train and predict.Experiments showed that this new method could fulfil adaptive classification of bearing fault signals and definite fault conclusion quickly and effectively.
作者 孟良 许同乐 马金英 蔡道勇 MENG Liang;XU Tong-le;MA Jin-ying;CAI Dao-yong(School Mechanical Engineering, Shandong University of Technology, Zibo 255049, China;School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo 255049, China;Shandong Keda M&E Technology Co.,Ltd., Jining 272000, China)
出处 《哈尔滨理工大学学报》 CAS 北大核心 2022年第1期92-99,共8页 Journal of Harbin University of Science and Technology
基金 山东省自然科学基金(ZR2021ME221).
关键词 局部均值分解 形态滤波 剪枝方法 最小二乘支持向量机 故障诊断 local mean decomposition morphological filtering pruning method least squares support vector machine fault diagnosis
  • 相关文献

参考文献11

二级参考文献109

共引文献296

同被引文献44

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部