期刊文献+

矿热炉内部多物理场的数值模拟

Numerical Simulation of Multi-Physical Field Inside Submerged arc Furnace
下载PDF
导出
摘要 为了研究大型矿热炉内电/磁/热多物理场耦合作用下熔池内的温度分布情况,建立了48 MW大型矿热炉三维仿真计算模型。基于计算流体力学(CFD)、多相流传热传质机理,深入探究大型矿热炉电/磁/热多物理场耦合作用下矿料-熔渣-合金层的多相流传热传质机理。预测了矿热炉熔池内部温度分布情况,揭示了温度分布的影响因素。结果表明,电流密度的分布会受到集肤效应和临近效应的影响,电流密度最大值出现在电极端部的内侧壁处;熔池内焦耳热主要分布在电极端部附近;高温区主要集中在电极附近的坩埚区内,并且随着电极插入深度的增加,合金溶液的最大温度值会逐渐增大。 In order to study the temperature distribution in the molten pool under the coupling action of electric/magnetic/thermal multi-physics in the large-scale submerged arc furnace,a three-dimensional simulation calculation model of the 48 MW large-scale submerged arc furnace was established.Based on computational fluid dynamics(CFD)and the mechanism of multiphase flow heat and mass transfer,the in-depth exploration of the multiphase flow heat and mass transfer mechanism of the mineral material-slag-alloy layer under the coupling of electric/magnetic/thermal multi-physical fields in large-scale submerged arc furnaces are researohea.The temperature distribution inside the molten pool of the submerged arc furnace is predicted,and the influencing factors of the temperature distribution are revealed.The results show that the distribution of current density will be affected by the skin effect and proximity effect.The maximum current density appears at the inner wall of the electrode end;the Joule heat in the molten pool is mainly distributed near the electrode end;the high temperature zone is mainly concentrated in the electrode vicinity of the crucible area,and as the electrode insertion depth increases,the maximum temperature of the alloy solution will gradually increase.
作者 张新杰 刘鹏 孙昊 张越 Zhang Xinjie;Liu Peng;Sun Hao;Zhang Yue(School of Mechanical and Power Engineering,Shenyang University of Chemical Technology,Shenyang 110142,Liaoning)
出处 《山东化工》 CAS 2022年第4期169-172,共4页 Shandong Chemical Industry
基金 博士启动基金(2019-BS-189)。
关键词 矿热炉 电磁场 温度场 数值模拟 submerged arc furnace electromagnetic field temperature field numerical simulation
  • 相关文献

参考文献5

二级参考文献32

  • 1马新生,耿茂鹏,饶磊,尧军平,杨小军.基于ANSYS的电渣熔铸渣池热电场模拟的载荷处理[J].铸造技术,2004,25(12):887-889. 被引量:6
  • 2王立军,贾申利,史宗谦,荣命哲.真空电弧磁流体动力学模型与仿真研究[J].中国电机工程学报,2005,25(4):113-118. 被引量:43
  • 3傅杰,陈思善,陈崇禧,王涌.电渣重熔过程中渣池内温度分布对冶金质量的影响[J].金属学报,1981,17(4):394.
  • 4[3]沈顾身.冶金传输原理基础[M].北京:冶金工业出版社,1999.36.
  • 5尧军平,耿茂鹏,马新生.电渣重熔锭ANF-6熔渣渣皮形成的分析[J].南昌大学学报,2003,25(2):2-3.
  • 6[8]Mellberg P O.Temperature Distribution,Heat Flow and Solidification Conditions in Electro-slag Remelting[D].Stockholm:The Royal Institute of Technology,1975.
  • 7Hauksdottir A S, Gestsson A, Vesteinsson A. Submerged-Arc Ferrosilicon Furnace Simulator: Validation for Different Furnaces and Operating Ranges [J].Control Engineering Practice, 1998, 6(8): 1035.
  • 8Alexis J, Ramirez M, Trapaga G, et al. Modeling of a DC Electric Arc Furnace-Heat Transfer From the Arc [J]. ISIJ International, 2000, 40(11): 1089.
  • 9Yang Y, Xiao Y, Reuter M A. Analysis of Transport Phe nomena in Submerged Arc Furnace for Ferroehrome Production [C] //Gelen H. Proceedings of Tenth International Ferroalloys Congress. Cape Town: SAIMM. 2004: 15.
  • 10Bowman B. Effects on Furnace Arcs of Submerging by Slag [J]. Ironmaking and Steelmaking, 1990, 17(2): 123.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部