期刊文献+

基于气压控制的单谱线4.3μm空芯光纤HBr激光器

Hollow-Core Fiber HBr Laser with 4.3 μm Single Spectral Line Based on Gas Pressure Control
原文传递
导出
摘要 基于空芯光纤(HCF)的气体激光器是实现中红外激光输出的一种有效手段,一般情况下,跃迁选择定则决定一条泵浦吸收谱线对应两条激射跃迁谱线。通过气压控制的方法实现了单一谱线的4.3μm单程结构HCF HBr激光器。以自研的1958 nm连续波高功率窄线宽掺铥光纤放大器为泵浦源,泵浦一段5 m长、充低压HBr气体的反共振HCF,通过气压控制分别实现了同位素H;Br和H;Br单一谱线4.3μm的激光输出,最大激光功率为350 mW,总的光光转换效率约为8%。利用自行搭建的光纤扫描装置测量了输出激光光斑,结果表明其是一种基模。 Gas laser based on hollow-core fiber(HCF) is an effective means to realize mid-infrared laser output. Generally, according to the transition selection rule, one pump absorption line corresponds to two lasing transition lines. A single-pass HCF HBr laser with a 4.3 μm single spectral line is realized by means of air pressure control. Using the self-developed 1958 nm continuous wave high-power narrow linewidth thulium-doped fiber amplifier as the pump source, a 5-meter-long anti-resonant HCF filled with low-pressure HBr gas is pumped. The laser output with 4.3 μm single spectral line of isotope H;Br and H;Br is realized respectively through air pressure control, the maximum laser power is 350 mW, and the total optical-optical conversion efficiency is about 8%. The output laser spot is measured by the self-built optical fiber scanning device, and the result shows that it is a fundamental mode.
作者 周智越 崔宇龙 黄威 李昊 裴闻喜 王蒙 王泽锋 Zhou Zhiyue;Cui Yulong;Huang Wei;Li Hao;Pei Wenxi;Wang MengU;Wang Zefeng(College of Advanced Interdisciplinary Studies,National University of Defense Technology,Changsha,Hunan 410075,China;State Key Laboratory of Pulsed Power Laser Technology,Changsha,Hunan 410073,China;Hunan Provincial Key Laboratory of High Energy Laser Technology,Changsha,Hunan 410073,China)
出处 《光学学报》 EI CAS CSCD 北大核心 2022年第5期162-170,共9页 Acta Optica Sinica
基金 国家自然科学基金面上项目(61705266) 湖南省自然科学基金杰出青年科学基金项目(2019JJ20023)
关键词 激光器 光纤激光器 分子气体激光器 空芯光纤 lasers fiber lasers molecular gas lasers hollow-core fibers
  • 相关文献

参考文献3

二级参考文献34

  • 1Y Kalisky, O Kalisky.The status of high-power lasers and their applications in the battlefield [J].Opt Eng, 2010, 49(9): 091003.
  • 2Jianfeng Li, Darren D Hudson, Stuart D Jackson.High-power diode-pumped fiber operating at 3 μm [J].Opt Lett, 2011, 36(18): 3642-3644.
  • 3Stuart D Jackson.Towards high-power mid-infrared emission from a fiber laser [J].Nature Photonics, 2012, 16(6): 423-431.
  • 4M Bernier, V Fortin, N Caron, et al..Mid-infrared chalcogenide glass Raman fiber laser [J].Opt Lett, 2013, 38(2): 127-129.
  • 5Ori Henderson-Sapir, J Munch, D J Ottaway.Mid-infrared fiber laser at and beyond 3.5 μm using dual-wavelength pumping [J].Opt Lett, 2014, 39(3): 493-496.
  • 6M Bernier, V Fortin, M El-Amraoui, et al..3.77 μm fiber laser based on cascaded Raman gain in a chalcogenide glass fiber [J].Opt Lett, 2014, 39(7): 2052-2055.
  • 7T Y Chang, O R Wood.An optically pumped CO2 laser [J].IEEE J Quantum Electron, 1972, 8(6): 598-599.
  • 8H R Schlossberg, H R Fetterman.Optically pumped vibrational transition laser in OCS [J].Appl Phys Lett, 1975, 26(6): 316-318.
  • 9H C Miller, D T Radzykewycz, G Hager.An optically pumped mid-infrared HBr laser [J].IEEE J Quantum Electron, 1994, 30(10): 2395-2400.
  • 10J E McCord, H C Miller, G Hager, et al..Experimental investigation of an optically pumped mid-infrared carbon monoxide laser [J].IEEE J Quantum Electron, 1999, 35(11): 1602-1612.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部