期刊文献+

Fault diagnosis method of track circuit based on KPCA-SAE 被引量:2

基于KPCA-SAE网络的轨道电路故障诊断方法研究
下载PDF
导出
摘要 At present,ZPW-2000 track circuit fault diagnosis is artificially analyzed and monitored.Its discrimination method not only is low efficient and takes a long period,but also requires highly experienced personnel to analyze the data.Therefore,we introduce kernel principal component analysis and stacked auto-encoder network(KPCA-SAD)into the fault diagnosis of ZPW-2000 track circuit.According to the working principle and fault characteristics of track circuit,a fault diagnosis model of KPCA-SAE network is established.The relevant parameters of key components recorded in the data collected by field staff are used as the fault feature parameters.The KPCA method is used to reduce the dimension and noise of fault document matrix to avoid information redundancy.The SAE network is trained by the processed fault data.The model parameters are optimized overall by using back propagation(BP)algorithm.The KPCA-SAE model is simulated in Matlab platform and is finally proved to be effective and feasible.Compared with the traditional method of artificially analyzing fault data and other intelligent algorithms,the KPCA-SAE based classifier has higher fault identification accuracy.
作者 JIN Zuchen DONG Yu 金祖臣;董昱(兰州交通大学自动化与电气工程学院,甘肃兰州730070)
出处 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第1期89-95,共7页 测试科学与仪器(英文版)
基金 National Natural Science Foundation of China(No.61763023)。
关键词 ZPW-2000 track circuit fault diagnosis stacked auto-encoder(SAE) kernel principal component analysis(KPCA) ZPW-2000型轨道电路 故障诊断 栈式自编码网络 核主元分析
  • 相关文献

参考文献11

二级参考文献78

共引文献282

同被引文献33

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部