期刊文献+

基于动态稀疏注意力的地铁客流预测模型 被引量:3

Metro Passenger Flow Prediction Model Based on Dynamic Sparse Attention
下载PDF
导出
摘要 地铁客流预测是随时间演变的多维时间序列数据,不同序列之间存在复杂的动态相互依赖关系。为挖掘多种监测指标之间存在的内在复杂关系,提出动态稀疏注意力模型:利用全局变量注意力自动选择相关驱动序列,增强模型预测的判别性;根据局部紧密相关和全局稀疏相关的先验知识,对历史时间步和相关变量分别卷积和稀疏卷积,提取局部时间和局部变量特征;设计了稀疏注意力对相关时间步加权和变量加权,提高预测表现。结果表明,与其他常用客流预测模型相比,动态稀疏注意力模型能高度准确地预测客流。 Metro passenger flow prediction is multi-dimensional time series data that changes as time passes,and complex dynamic interdependent relationship exists among various series.To explore the internal complex relationship among various monitoring indicators,dynamic sparse attention model(DSANNs)is proposed,which uses global variable attention to automatically select relevant driver sequence to enhance the discriminability of model prediction.According to the prior knowledge of local close correlation and global sparse correlation,the convolution and sparse convolution of historical time steps and related variables are conducted to extract the characteristics of local time and local variables,and the weight of related time steps and variables by sparse attention is designed to improve prediction performance.The experiment results show that,compared with other commonly used passenger flow prediction model,DSANNs can carry out the prediction with high level of accuracy.
作者 马茜 梁奕 段毅 曾尚琦 MA Qian;LIANG Yi;DUAN Yi;ZENG Shangqi(Xixian New District Rail Transit Development Co.,Ltd.,710086,Xi′an,China;不详)
出处 《城市轨道交通研究》 北大核心 2022年第4期22-26,共5页 Urban Mass Transit
基金 国家重点研发计划“云计算和大数据”重点专项(2017YFB1001800) 江苏省工业和信息化厅重点质量攻关项目(2019-305)。
关键词 地铁 客流预测 动态稀疏注意力模型 metro passenger flow prediction DSANNs
  • 相关文献

参考文献1

二级参考文献35

  • 1Rumelhart D E, Hinton G E,Williams R J.Learning rep- resentations by back-propagating errors [ J ]. Nature, 1986,323 (6088) : 533-536.
  • 2Bengio Y.Deep Learning of Representations:looking for- ward [ J]. Lecture Notes in Computer Science, 2013, 7978:1-37.
  • 3Bottou L, Bengio Y, Cun Y L.Global training of document processing systems using graph transformer networks [C3//Proceedings of the IEEE Computer Society Con- ference on Computer Vision and Pattern Recognition.San Juan, Puerto Rico : IEEE, 1997:489-494.
  • 4Hinton G E, Salakhutdinov R R. Reducing the dimension- ality of data with neural networks [ J ].Science, 2006,313 (5786) :504-507.
  • 5Bengio Y.Learning deep architectures for AI[ M ]. Hano- ver: The Association for Computing Machinery ,2009.
  • 6Lecun Y, Bottou L, Bengio Y, et al. Gradient based learning applied to document recognition [ J ].Proceedings of the IEEE, 1998,86 ( 11 ) : 2278-2324.
  • 7Hinton G E, Osindero S,Yw T.A fast learning algorithm for deep belief nets [ J ]. Neural Computation, 2006, 18 (7) : 1527-1554.
  • 8Deng L, Seltzer M, Yu D, et al. Binary coding of speech spectrograms using a deep auto-encoder [ C ]// Proceedings of the llth Annual Conference on Interna- tional Speech Communication Association. Chiba, Japan : Makuhari, 2010:1692-1695.
  • 9He K M, Zhang X, Ren S, et al. Deep residual learning for image recognition [ C ]//Proceedings of the International Conference on Computer Vision and Pattern Recognition. Las Vegas, Nevada.IEEE, 2016 : 770-778.
  • 10Krizhevsky A, Sutskever I, Hinton G E.Imagenet classi- fication with deep convolutional neural networks [ C ]// Proceeding of 26th Annual Conference on Neural Infor- mation Processing System. Lake Tahoe, USA: MIT Press, 2012 : 1097-1105.

共引文献33

同被引文献48

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部