期刊文献+

主链结构对阴离子交换膜碱稳定性的影响 被引量:1

Influence of backbone structures on alkaline stability of anion exchange membranes
下载PDF
导出
摘要 碱性阴离子交换膜燃料电池(AAEMFCs)可使用低成本的非Pt催化剂,具有反应高效及环境友好等优点,因可在一定程度上取代质子交换膜燃料电池(PEMFCs)而备受关注.阴离子交换膜(AEMs)作为AAEMFCs的核心部件,需要兼备优异的OH-传输性能、机械性能、热稳定性及碱稳定性等.但目前AEMs仍面临的巨大挑战是耐碱性较差,不能够大规模商业化应用.本文重点综述了聚合物主链结构对AEMs的碱稳定性的影响,分析总结了碱性环境下AEMs主链的降解机理及提高碱稳定性的解决思路,并对未来可能的发展方向进行了展望. Alkaline anion exchange membrane fuel cells(AAEMFCs) can use low-cost non-PT catalysts, and have the advantages of high reaction efficiency and environmental friendliness. AAEMFCs can replace proton exchange membrane fuel cells(PEMFCs) to some extent, which has attracted much attention. As the core component of AAEMFCs, anion exchange membrane(AEMs) requires excellent OH;transport performance, mechanical properties, thermal stability and alkaline stability. However, AEMs is still faced with the great challenge of poor alkaline resistance, which can not be used in large-scale commercial applications. In this paper, the influence of the polymerization backbone structures on the alkaline stability of AEMs was reviewed, the degradation mechanism and solution of AEMs in alkaline environment were analyzed and summarized, and the possible development direction of AEMs in the future was prospected.
作者 王雪 李永纲 郑吉富 张所波 李胜海 WANG Xue;LI Yonggang;ZHENG Jifu;ZHANG Suobo;LI Shenghai(Key Lab of Polymer Ecomaterials,Changchun Institute of Applied Chemistry,Chinese Academy of Sciences,Changchun 130022,China;School of Applied Chemistry and Technology,University of Science and Technology of China,Hefei 230026,China)
出处 《膜科学与技术》 CAS CSCD 北大核心 2022年第2期117-127,共11页 Membrane Science and Technology
基金 国家自然科学基金项目(21774213) 吉林省科技发展计划项目(20200801051GH)。
关键词 碱性阴离子交换膜燃料电池 阴离子交换膜 聚合物主链结构 碱稳定性 alkaline anion exchange membrane fuel cells anion exchange membranes polymerization backbone structures alkaline stability
  • 相关文献

参考文献5

二级参考文献220

  • 1Ge X C, Xu Y, Xiao M, et al. European Polymer Journal, 2006, 42:1206-1214
  • 2Wang L, Meng Y Z, Wang S J, et al. Journal of Polymer Science, Part A: Polymer Chemistry, 2005, 43:6411-6418
  • 3Miyatake K, Oyaizu K, Tsuchida E, et al. Macromolecules, 2001, 34:2065-2071
  • 4Norsten T B, Guiver M D, Murphy J, et al. Adv. Funct. Mater., 2006, 16:1814-1822
  • 5Kim D S, Robertson G P, Guiver M D, et al. Journal of Membrane Science, 2006, 281:111-120
  • 6Yang Y S, Shi Z Q, Holdcroft S. Macromolecules, 2004, 37: 1678-1681
  • 7Gao Y, Robertson G P, Guiver M D, et al. Macromolecules, 2005, 38:3237-3245
  • 8Gao Y, Robertson G P, Kim D S, et al. Macromolecules, 2007, 40:1512-1520
  • 9Zhao C J, Li X F, Wang Z, et al. Journal of Membrane Science, 2006, 280:643-650
  • 10Zhao C J, Lin H D, Shao K, et al. Journal of Power Sources, 2006, 162:1003-1009

共引文献20

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部