期刊文献+

基于边界适应和风电场间影响的海上风电场微观选址优化研究 被引量:2

Micro-siting optimization of offshore wind farms based on boundary adaptation and inter-wind farm impacts
下载PDF
导出
摘要 海上风电场用海面积有限,同时湍流低、尾流恢复慢,风力机的优化排布是增加收益的有效手段和关键技术之一。针对现有排布方法难以充分利用海上风电场规划区域,同时海上风电场集中开发,风电场之间往往相互影响等问题,文章利用基于边界适应和风电场间影响的海上风电场微观选址优化方法,结合实际算例进行分析。分析结果表明:周边风电场对目标风电场的影响程度较大,使得目标风电场的全场年净发电量比不考虑周边风电场影响时减少了1.08%;而采用边界适应优化方法后,相对于优化前遗传算法优化网格参数得到的规则排布,使得目标风电场的全场年净发电量提升了1.04%。表明该方法具有一定的应用价值,可以为风电场微观选址提供参考。 With limited sea area for offshore wind farms,as well as low turbulence and slow wake recovery,achieving optimal wind turbine scheduling is an effective means and one of the key technologies to increase revenue.In view of the existing scheduling optimization methods,it is difficult to make full use of the planning area of offshore wind farms,while offshore wind farms are developed centrally,and wind farms often affect each other,etc.Using the microscopic siting optimization method based on boundary adaptation and the influence of wind farms,combined with the analysis of practical examples,it is concluded that the existing wind farms in the surrounding area have a greater degree of influence on the target wind farm,making the target wind farm’s full annual net the proposed boundary-adaptive optimization method,when compared with the pre-optimized grid parameters of the genetic algorithm,results in a 1.04%increase in the annual net power generation of the target wind farm.
作者 王凯 许昌 韩星星 焦志雄 李彤彤 Wang Kai;Xu Chang;Han Xingxing;Jiao Zhixiong;Li Tongtong(Energy and Electric College,Hohai University,Nanjing 211100,China)
出处 《可再生能源》 CAS CSCD 北大核心 2022年第4期481-486,共6页 Renewable Energy Resources
基金 国家重点研发项目(2019YFE0104800) 国家自然基金委雅砻江联合基金资助项目(U1865101)。
关键词 风电场间影响 边界适应 遗传算法 规则排布 inter-wind farm impact boundary adaptation genetic algorithm regular scheduling
  • 相关文献

参考文献5

二级参考文献53

  • 1丁明,吴义纯,张立军.风电场风速概率分布参数计算方法的研究[J].中国电机工程学报,2005,25(10):107-110. 被引量:218
  • 2Zerdem B O, Turkeli T M. Wind energy potential estimation and micrositting on Izmir[J]. Renewable Energy, 2005, 30(10): 1623-1633.
  • 3Andrew Kusiak, Zheng Haiyang, Song Zhe. Wind farm power prediction: A data-mining approach[J]. Wind Energy, 2009, 12(3): 275-293.
  • 4Jose Castro Mora, Jose M, Calero Baron, et al. An evolutive algorithm for wind farm optimal design [J]. Neurocomputing, 2007, 70(16): 2651-2658.
  • 5Palma J M, Castro F A, Ribeiro L F, et al. Linear and nonlinear models in wind resource assessment and wind turbine micro-siting in complex terrain[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(12): 2308-2306.
  • 6Jens Carsten Hansen, Hans Jorgenson, Andrea Hahmann, et al. State of the art methods for wind resource assessment[C]//Wind energy seminar. Pretoria: IEEE, 2009: 135-166.
  • 7Wang Chunqiu, Wang Jun, Yang Geng, et al. Optimal micro-sitting of wind and turbine models[C]//Conference on Decision and Control. Shanghai: IEEE, 2009: 45-48.
  • 8Zhang Changshui, Hou Guangdong, Wang Jun. A fast algorithm based on the submodular property for optimization of wind turbine positioning[J]. Renewable Energy, 2011, 36(11): 2951-2958.
  • 9Gu Shengping, Ji Li. Study on optimization of wind farm micro-layout[C]//Power and Energy Engineering Conference. Chengdu: APPEEC, 2010: 1-4.
  • 10Song M X, Chen k, He Z Y, et al. Wake flow model of wind turbine using particle simulation[J]. Renewable energy, 2012, 41(1): 185-190.

共引文献48

同被引文献58

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部