期刊文献+

基于卷积神经网络的手指静脉采集识别系统

Finger-vein Acquisition and Recognition System Based on Convolutional Neural Network
下载PDF
导出
摘要 手指静脉采集识别技术是一种新的生物特征识别技术,因其活体性、高稳定性、高安全性等优点,具有广阔的市场应用前景,但现今市场已有的手指静脉采集识别设备存在着识别准确率不高、采集效果不佳等问题,无法达到快速准确识别的要求。本文提出了一种基于卷积神经网络的手指静脉识别系统,系统分为采集和识别两大模块。基于血红蛋白对近红外光的吸收特性制作了新型的手指静脉图像采集装置,预处理采用Canny算子提取手指静脉图像边缘,并采用中线拟合矫正方式修正了图像旋转问题;基于U-Net网络优化设计手指静脉识别技术,提出基于AlexNet网络的深度学习方法,对采集模块获取的自建图片数据集进行识别分析,实验结果表明,本文方法的识别准确率可达到96.65%,相比U-Net网络提升了2.17%,同时软硬件一体化设计使得系统的稳定性得到提升。 Finger vein acquisition and recognition technology is a new biometric recognition technology. It has broad market application prospects because of its advantages of liveness, high stability and high security. However,the existing finger vein acquisition and recognition equipment in the market has some problems, such as low recognition accuracy and poor acquisition effect, which can not meet the requirements of fast and accurate recognition. This paper presents a finger vein recognition system based on convolutional neural network. The system is divided into two modules: acquisition and recognition. Based on the absorption characteristics of hemoglobin to near-infrared light, a new type of finger vein image acquisition device is made. The edge of finger vein image is extracted by Canny operator in preprocessing, and the image rotation problem is corrected by midline fitting correction;Based on the optimal design of finger vein recognition technology based on u-net network, a deep learning method based on Alex net network is proposed to recognize and analyze the self built picture data set obtained by the acquisition module. The experimental results show that the recognition accuracy of this method can reach 96.65%, which is 2.17% higher than that of u-net network. At the same time, the integrated design of software and hardware improves the stability of the system.
作者 孙蕾 李小霞 吴艳玮 郭艳玲 杨峻一 Sun Lei;Li Xiaoxia;Wu Yanwei;Guo Yanling;Yang Junyi(Southwest University of Science and Technology,School of Information Engineering,Mianyang 621010,China;Robot Technology Used for Special Environment Key Laboratory of Sichuan Province(Southwest University of Science and Technology),Mianyang621010,China)
出处 《科学技术创新》 2022年第12期83-86,共4页 Scientific and Technological Innovation
基金 西南科技大学大学生创新基金项目(CX21-019) 省级国家级大学生创新创业训练计划项目(S202110619054) 四川省科技计划项目(2021YFG0383)。
关键词 手指静脉 采集 识别模块 卷积神经网络 AlexNet网络 Finger-vein Collection Module Recognition module Convolutional Neural Network(CNN) AlexNet
  • 相关文献

参考文献3

二级参考文献22

  • 1周建设.WindowsCE设备驱动及BSP开发指南[M].北京:中国电力出版社,2010.
  • 2YANG JINFENG, SHI YIHUA, YANG JINLI, et al. A Novel Finger- vein Recognition Method With Feature Combination[C]//Proceedings of the 16th IEEE Intemation Conference on Image Processing, Cairo, 2009 : 2709-2712.
  • 3YANG JINFENG, SHI YIHUA, YANG JINLI. Finger-vein Recogni- tion Based on a Bank of Gabor Filters[C]//9th Asian Conference on Computer Vision ,Xi 'an, 2009:374-383.
  • 4YANG JINFENG, ZHANG BEN, SHI YIHUA. Scattering removal for finger-vein image restoration[J]. Sensors, 2012,12(3 ): 3627-3640.
  • 5姜波.Windows Embedded CE6.0程序设计实践[M].北京:机械工业出版社,2008.
  • 6Bretzner L, Eaptev I, Lindeberg T. Hand gesture recognition using multi scale colour features, bierarehical models and particle filtering[C]//Automat- ic Face and Gesture Recognition, 2002. Proceed- ings. Fifth IEEE International Conference on. IEEE, 2002 : 423-428.
  • 7Barczak A L C, Gilman A, Reyes N H, et al. A- nalysis of feature invariance and discrimination for hand images: Fourier descriptors versus moment in- variants[C]// International Conference Image and Vision Computing. New Zealand : IVCNZ,2011.
  • 8Ojala T, Pietikainen M, Maenpaa M. Multircsolu- tion gray-scale and rotation invariant texture classi- fication width local binary patterns [J ]. IEEE Transactions on Pattern Analysis and Machine In- telligence,2002,24 (7) :971-987.
  • 9Barczak A, Reyes N H, Abastillas M, et al. A new 2D static hid gesture colour image dataset for asl gestures[J]. Research Letter Information Math Science, 2011 (15) : 12-20.
  • 10王玮,黄非非,李见为,冯海亮.使用多尺度LBP特征描述与识别人脸[J].光学精密工程,2008,16(4):696-705. 被引量:52

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部