期刊文献+

带有M-H反应项的捕食-食饵系统的分歧解 被引量:1

Bifurcation solutions for the predator-prey model with M-H functional response
下载PDF
导出
摘要 目的在Dirichlet边界条件下研究一类带有Monod-Haldane反应项的捕食-食饵模型的动力学行为。方法利用椭圆型方程的极值原理和上下解方法给出了正解的先验估计,再结合局部分歧理论及稳定性理论对模型进行讨论。结果给出系统分歧解存在和稳定的充分条件。结论在一定条件下,具有相互制约关系的捕食者和食饵是可以共存的。 Purposes—The dynamic behavior of a predator-prey model with Monod-Haldane functional response is studied under Dirichlet boundary conditions.Methods—A priori estimates of positive solutions is given by using the extremum principle and upper-lower solutions method of elliptic equations,and then the model is discussed by combining the local bifurcation theory and stability theory.Result—Sufficient conditions for the existence and stability of bifurcation solutions are obtained.Conclusion—Under certain conditions,the predators and prey with mutual restriction can coexist.
作者 李啸飞 王利娟 LI Xiao-fei;WANG Li-juan(School of Mathematics and Information Science, Baoji University of Arts and Sciences, Baoji 721013, Shaanxi, China)
出处 《宝鸡文理学院学报(自然科学版)》 CAS 2022年第1期10-14,20,共6页 Journal of Baoji University of Arts and Sciences(Natural Science Edition)
基金 陕西省科技厅自然科学基础研究计划项目(2018JQ1066)。
关键词 DIRICHLET边界条件 Monod-Haldane反应项 分歧解 Dirichlet boundary conditions Monod-Haldane functional response bifurcation solution
  • 相关文献

参考文献3

二级参考文献35

  • 1Beddington J R. Mutual interference between parasites or predators and its effect on searching efficiency. J. Animal Ecol., 1975, 44(1): 331-340
  • 2DeAngelis D L, Goldstein 1% A, O'neill 1% V. A model for trophic interaction. Ecology, 1975, 56(2): 881-892
  • 3Blat J, Brown K J. Global bifurcation of positive solutions in some systems of elliptic equations. SIAM J. Math. Anal., 1986, 17(6): 1339-1353
  • 4Du Y H, Lou Y. Some uniqueness and exact multiplicity results for a predator-prey model. Trans. Araer. Math. Soc., 1997, 349(6): 2443-2475
  • 5Du Y H, Lou Y. Qualitative behavior of positive solutions of a predator-prey model: effects of saturation. Proc. R. Soc. Edinburgh Sect. A, 2001, 131(2): 321-349
  • 6Ye Q X, Li Z Y. Introduction to Reaction-Diffusion Equations. Beijing: Science Press, 1990
  • 7Smoller J. Shock Waves and Reaction-Diffusion Equations. New York: Spring-Verlag, 1983
  • 8Crandall M G, Rabinowitz P H. Bifurcation from simple eigenvalues.J. Functional Analysis, 1971, 8(2): 321-340
  • 9Wu J H. Global bifurcation of coexistence state for the competition model in the chemostat. Nonlinear Analysis, 2000, 39(7): 817-835
  • 10Crandall M G, Rabinowitz P H. Bifurcation, perturbation of simple eigenvalues, and linearized stability. Arch. Rational Mech. Anal., 1973, 52(2): 161-180

共引文献18

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部