期刊文献+

特征漂移约束算法在推荐系统中的优化 被引量:1

Optimization of recommendation system by feature drift constraint algorithm
下载PDF
导出
摘要 在时间矩阵分解方法的基础上,利用概念漂移检测捕获随时间动态变化的用户兴趣和项目偏好特征,可以有效提高个性化推荐算法的准确性。为此,该文提出特征漂移约束(feature drift constraint,FDC)算法,首先,根据输入样本的评级反馈构建评级矩阵的时间序列,采用矩阵分解方法将评级矩阵分解为用户特征矩阵和项目特征矩阵;其次,在输入新的评级样本后训练模型,采用随机梯度下降方法获得优化的学习参数,计算概念漂移的动态特征加权用于调整模型;最后,结合用户兴趣特征向量和项目偏好特征向量内积计算得到预测的项目评级,实现项目推荐。仿真结果表明,与MF、TSVD++、TMF和MCFTT算法相比,特征漂移约束算法在推荐准确性和概念漂移检测的有效性方面均有较好提升。 Based on the time matrix decomposition method,using concept drift detection to capture user interest and item preference features that change dynamically over time can effectively improve the accuracy of the personalized recommendation algorithm.To this end,a feature drift constraint algorithm(FDC)algorithm is proposed.Firstly,the time series of the rating matrix is constructed according to the rating feedback of the input samples,and the rating matrix is decomposed into the user feature matrix and the item feature matrix by the matrix decomposition method.Secondly,train the model after inputting new rating samples,use the stochastic gradient descent method to obtain the optimized learning parameters,calculate the dynamic feature weight of the concept drift to adjust the model.Finally,combine the user interest feature vector and the item preference feature vector inner product to calculate forecast project rating and realize project recommendation.The simulation results show that compared with the MF,TSVD++,TMF and MCFTT algorithms,the feature drift constraint algorithm has improved the accuracy of recommendation and the effectiveness of concept drift detection.
作者 刘云 张轶 郑文凤 LIU Yun;ZHANG Yi;ZHENG Wenfeng(Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China)
出处 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2022年第2期248-255,共8页 Journal of Northwest University(Natural Science Edition)
基金 国家自然科学基金(61761025) 云南省重大科技专项计划项目(202002AD080002)。
关键词 时间矩阵分解 推荐系统 概念漂移 动态特征加权 temporal matrix factorization recommender system concept drift dynamic feature weighting
  • 相关文献

参考文献4

二级参考文献36

  • 1郑先荣,曹先彬.线性逐步遗忘协同过滤算法的研究[J].计算机工程,2007,33(6):72-73. 被引量:25
  • 2王岚,翟正军.基于时间加权的协同过滤算法[J].计算机应用,2007,27(9):2302-2303. 被引量:26
  • 3RESNICK P, IACOVOU N, SUCHAK M, et al. GroupLens: an open architecture for collaborative filtering of netnews [ C ]// CSCW'94: Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work. New York: ACM, 1994:175-186.
  • 4ADOMAVICIUS G, TUZHILIN A. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions [ J]. IEEE Transactions on Knowledge & Data Engineer- ing, 2005, 17(6) : 734 -749.
  • 5SCHAFER J B, KONSTAN J, RIEDL J. Recommender systems in E-commerce [ C]// EC'99: Proceedings of the 1st ACM Conference on Electronic Commerce. New York: ACM, 1999:158-166.
  • 6JAYAWARDANA C, HEWAGAMAGE K P, HIRAKAWA M. A personalized information environment for digital libraries [ J]. Infor- mation Technology & Libraries, 2001, 20(4) : 185 - 196.
  • 7KONSTAN J A, MILLER B N, MALTZ D, et al. GroupLens: ap- plying collaborative filtering to Usenet news [ J]. Communications of the ACM, 2000, 40(3): 77-87.
  • 8OWEN S, ANIL R, DUNNING T, et al. Mahout in Action [ M]. Greenwich, CT: Manning Publications, 2011:34-47.
  • 9KOREN Y. Collaborative filtering with temporal dynamics [ J ] . Communications of the ACM, 2010, 53(4) : 89 -97.
  • 10XIONG L, CHEN X, HUANG T K, et al. Temporal collaborative filtering with bayesian probabilistic tensor faetorization [C]// SDM 2000: Proceedings of the 2010 SIAM International Conference on Data Mining. Philadelphia, PA: SIAM, 2010:211 -222.

共引文献444

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部