期刊文献+

基于双重欠采样代价敏感学习的推荐系统虚假用户检测方法 被引量:5

Spammer Detection Method of Recommendation Based on Double-Layer Under-Sampling Cost Sensitive Learning
原文传递
导出
摘要 当前推荐系统的商业价值日益突显,虚假用户检测成为保障推荐系统信息安全的关键.现有方法忽略了虚假用户检测问题的代价敏感特性,为此提出一种基于双重欠采样代价敏感学习的检测算法.首先对数据集进行双重采样均衡样本集,然后设计动态隶属度代价函数精确地刻画个体样本误分类代价差异.最后,建立代价敏感支持向量机得到检测函数.实验结果表明文章方法在降低总体误分类代价的同时提高了虚假用户的识别率,有效地解决了推荐系统虚假用户检测中的代价敏感问题. Spammer detection is the key to ensure information security in recommendation.The existing methods ignore the adverse effects of cost sensitive features on detection accuracy.A detection method based on double under-sampling and cost sensitive support vector machine is proposed.First,we use double under-sampling technology to balance data sets.The first under-sampling eliminates the noise samples while preserving the useful boundary samples;The second under-sampling compresses the redundant information based on the distribution characteristics and importance of the large class samples.Then,the dynamic function based on class confidence is introduced into the cost-sensitive optimization,and a cost-sensitive support vector machine with different miscalculation costs is established.Finally,we use the model to train the balanced sample set.Experimental results show that the proposed method effectively solves the cost sensitive problem and improves the detection accuracy.
作者 吕成戍 LüChengshu(School of Management Science and Engineering,Dongbei University of Finance and Economics,Dalian 116025)
出处 《系统科学与数学》 CSCD 北大核心 2021年第12期3548-3558,共11页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金资助项目(71602021,71801032,72172025) 2019年辽宁省教育厅科学研究项目(LN2019Q31) 东北财经大学2021年度校级科研项目(DUFE202142)资助课题。
关键词 欠采样 代价敏感学习 虚假用户 信息安全 Under-sampling cost sensitive learning spammer information security
  • 相关文献

参考文献4

二级参考文献53

  • 1郑恩辉,李平,宋执环.代价敏感支持向量机[J].控制与决策,2006,21(4):473-476. 被引量:33
  • 2万柏坤,薛召军,李佳,王瑞平.应用ROC曲线优选模式分类算法[J].自然科学进展,2006,16(11):1511-1516. 被引量:23
  • 3余力,董斯维,郭斌.电子商务推荐攻击研究[J].计算机科学,2007,34(5):134-138. 被引量:11
  • 4Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extension. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6): 734-749.
  • 5Li Q, Kim B M. Constructing user profiles for collaborative recommender system. In: Proceedings of the 6th Asia Pacific Web Conference. Hangzhou, China: Springer, 2004. 100--110.
  • 6Herlocker J L, Konstan J A, Borchers A, Riedl J. An algorithmic framework for performing collaborative filtering. In: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM, 1999. 230-237.
  • 7Mobasher B, Burke R, Bhaumik R, Sandvig J J. Attacks and remedies in collaborative recommendation. IEEE InteI1igent Systems, 2007, 22(3): 56-63.
  • 8Burke R, Mobasher B, Zabicki R, Bhaumik R. Identifying attack models for secure recommendation. In: Proceedings of the Beyond Personalization Workshop on the International Conference on Intelligent User Interfaces. San Diego, USA: ACM Press, 2005. 347-361.
  • 9Lam S K, Riedl J. Shilling recommender systems for fun and profit. In: Proceedings of the 13th International Conference on World Wide Web. New York, USA: ACM, 2004. 393-402.
  • 10O'Mahony M, Hurley N J, Kushmerick N, Silvestre G. Collaborative recommendation: a robustness analysis. ACM Transactions on Internet Technology, 2004, 4(4): 344-377.

共引文献42

同被引文献53

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部