期刊文献+

参数自适应的析取云模糊置信规则识别方法 被引量:1

Disjunctive Cloud Fuzzy Belief Rules for Recognition with Adaptive Parameters
下载PDF
导出
摘要 为获得准确的模糊置信规则结构参数,提出了参数自适应的析取云模糊置信规则识别方法 .为完成模糊域的自适应划分,提出了基于频数统计的双门限检测方法和基于包含度的双门限检测方法 .用云模型作为模糊集,改变熵系数和超熵系数,实现对模糊集形状的调整;前提属性的联接设置为析取逻辑关系,改进了证据的基本概率赋值方式,对规则权重和属性权重进行了优化.实验结果表明,与其他方法相比,本文方法的正确识别率提高了5%~15%,规则可解释性更强. In order to obtain the accurate structural parameters of fuzzy rules, a disjunctive cloud fuzzy belief rules based recognition method with adaptive parameters is proposed. In order to complete the adaptive division of fuzzy domain,a double threshold detection method based on frequency statistics and inclusion degree separately are proposed. Cloud model is used as fuzzy set, of which by changing entropy coefficient and super entropy coefficient to adjust the shape of fuzzy set, and the connection of premise attributes is set as disjunctive logic relation. The basic probability assignment of conflict evidence is improved, and a programming model is built to optimize the rule weight and attribute weight. The experimental results show that compared with other methods, the correct recognition rate of our method is improved by5%~15%, and the rules are more interpretable.
作者 李双明 关欣 王海滨 LI Shuang-ming;GUAN Xin;WANG Hai-bin(Naval Aviation University,Yantai,Shandong 264001,China;Unit 92941 of PLA,Huludao,Liaoning 125001,China)
机构地区 海军航空大学 [
出处 《电子学报》 EI CAS CSCD 北大核心 2022年第2期396-403,共8页 Acta Electronica Sinica
基金 国家自然科学基金青年基金(No.62001503) 国防科技卓越青年科学基金(No.2017-JCJQ-ZQ-003) 泰山学者工程专项经费(No.ts201712072)。
关键词 参数自适应 云模糊 析取置信规则 识别 adaptive parameters cloud fuzzy belief rule recognition
  • 相关文献

参考文献7

二级参考文献74

  • 1Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors. Nature, 1986, 323: 533-536.
  • 2Hagan M T, Menhaj M B. Training feedforward networks with the marquardt algorithm. IEEE Trans Neural Netw, 1994, 5:989-993.
  • 3Wilamowski B M, Yu H. Neural network learning without backpropagation. IEEE Trans Neural Netw, 2010, 21: 1793-1803.
  • 4Chen S, Cowan C, Grant P. Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans Neural Netw, 1991, 2:302-309.
  • 5Li K, Peng J X, Irwin G W. A fast nonlinear model identification method. IEEE Trans Automat Contr, 2005, 50: 1211-1216.
  • 6Hornik K. Approximation capabilities of multilayer feedforward networks. Neural netw, 1991, 4:251 257.
  • 7Hassoun M H. Fundamentals of Artificial Neural Networks. MIT Press, 1995. 35-55.
  • 8Cybenko G. Approximation by superpositions of a sigmoidal function. Math Control Signal Syst, 1989, 2:303-314.
  • 9White H. Artificial Neural Networks: Approximation and Learning Theory. Blackwell Publishers, Inc., 1992. 30-100.
  • 10Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: a new learning scheme of feedforward neural networks. In: Proceedings of IEEE International Joint Conference on Neural Networks, Budapest, 2004. 985-990.

共引文献80

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部