期刊文献+

基于改进神经网络的空间机械臂阻抗控制方法 被引量:5

Impedance control of space manipulator based on improved neural network
下载PDF
导出
摘要 针对环境信息不确定和碰撞模型未知情况下的空间机械臂柔顺控制问题,提出了一种基于改进型神经网络的阻抗控制方法。以空间机械臂阻抗控制系统闭环方程为基础,分析了环境信息不确定和碰撞模型未知情况下不能实现精准力控制的原因。利用粒子群优化算法调整神经网络中的权值矩阵,以提高神经网络的收敛速度和寻优性能。基于改进后的神经网络设计阻抗控制器,使改进后的神经网络能实时调整阻抗参数以达到更好的柔顺控制效果。数值结果表明,相比传统阻抗控制,该控制器能够有效减小力控制误差和位置控制误差,且对于力反馈干扰信号具有更强的抗干扰能力。 An impedance control method based on improved neural network was proposed oriented to compliance control of space manipulators under the condition of uncertain environmental information and unknown collision model.Based on the closed-loop equation of impedance control system,the reasons why precise force control can’t be achieved under the condition of uncertain environmental information and unknown collision model were analyzed.The weight matrices in the neural network were adjusted by particle swarm optimization algorithm to improve the convergence speed and optimization performance of neural network.An impedance controller based on the improved neural network was proposed,which accomplished compliance control.The improved neural network can adjust the impedance parameters on line to achieve better compliance control effect.Numerical simulation results show that the proposed controller can reduce the force control error and position control error effectively,and has a better anti-jamming capability for force feedback interference signal than traditional impedance controller.
作者 戚毅凡 贾英宏 赵宝山 钟睿 洪闻青 QI Yifan;JIA Yinghong;ZHAO Baoshan;ZHONG Rui;HONG Wenqing(Kunming Institute of Physics,Kunming 650223,China;School of Astronautics,Beihang University,Beijing 100191,China;Tianjin Key Laboratory of Microgravity and Hypogravity Environment Simulation Technology,Tianjin Institute of Aerospace Mechanical and Electrical Equipment,Tianjin 300301,China)
出处 《中国空间科学技术》 CSCD 北大核心 2022年第2期82-90,共9页 Chinese Space Science and Technology
基金 国家自然科学基金(11772023)。
关键词 空间机械臂 阻抗控制 神经网络 粒子群优化 智能控制 space manipulator impedance control neural network particle swarm optimization intelligent control
  • 相关文献

参考文献7

二级参考文献53

  • 1魏立新,李二超,王洪瑞.基于CMAC在线自学习模糊自适应控制的机器人力/位置鲁棒控制[J].电工技术学报,2005,20(5):40-44. 被引量:6
  • 2Joseph HAGGEGE,Mohamed BENREJEB,Pierre BORNE.ON THE DESIGN OF A NEURO-FUZZY CONTROLLER–APPLICATION TO THE CONTROL OF A BIOREACTOR[J].Journal of Systems Science and Systems Engineering,2005,14(4):417-435. 被引量:1
  • 3舒怀林.PID神经元和PID神经网络分析.1998中国控制会议论文集[M].长沙:国防大学出版社,1998.607-613.
  • 4Xiao N F, Saeid Nahavandi. Learning-based visual and force servoing control of a robot in an unknown environment[J]. System Engineering and Electronic Technology, 2004, 15(2): 171-178.
  • 5Xiao N F, Saeid Nahavandi. Visual feedback control of a robot in an unknown environment[J]. The International Journal of Advanced Manufacturing Technology, 2004, 24(7-8): 509-516.
  • 6Antonio Lopes, Fernando Almeida. A force-impedance controlled industrial robot using an active robotic auxiliary device[J]. Robotics and Computer- Integrated Manufacturing, 2008, 24(3): 299-309.
  • 7Huang L, Ge S S, Lee T H. Fuzzy unidirectional force control of constrained robotic manipulators[J]. Fuzzy Sets and System, 2003, 134(1): 135-146.
  • 8Tsuji T, Tanaka Y. On-line learning of robot arm impedance using neural networks[J]. Robotics and Autonomous Systems, 2005, 52(4): 257-271.
  • 9Wim Meeussen, Ernesto Staffetti, Herman Bruyninckx. Integration of planning and execution in force controlled compliant motion[J]. Robotics and Autonomous Systems, 2008, 56(5): 437-450.
  • 10Namiki A, Komuro T, Ishikawa M. High-speed sensory- motor fusion for robotic grasping[J]. Measurement Science and Technology, 2002, 13(11): 1767-1778.

共引文献85

同被引文献48

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部