期刊文献+

全局转录机器工程调控微生物代谢的应用进展

Progress in the microbial metabolism by global transcription machinery engineering regulation
下载PDF
导出
摘要 全局转录机器工程(global transcription machinery engineering,gTME)采用微生物作为“细胞工厂”从转录水平扰动基因表达,直接或间接操纵全局转录调控网络,是一种在基因和细胞水平改造微生物、强化目标性能的高效方法。近年来gTME在增强菌株耐受性、提高应答反应能力、高产代谢产物等方面被广泛应用,较传统方法具有快速优化代谢途径、显著提高产物效率等优势。该文综述了gTME分子机制、在应变工程和代谢工程中最新进展及相配合的进化手段,以及高通量筛选策略,以期为微生物改造和代谢工程研究提供帮助。 Global transcription machinery engineering(gTME)uses microorganisms as“cell factories”to perturb gene expression at the transcription level and directly or indirectly manipulate the global transcriptional regulatory network.It is a powerful technology of engineered microorganisms to enhance target performance at the gene and cell level.In recent years,gTME has been widely used in enhancing strain tolerance,improving response capacity,and increasing the yield of metabolites.Compared with traditional methods,gTME has the advantages of optimizing metabolic pathways rapidly and improving product efficiency significantly.This article reviews the molecular mechanism of gTME,the latest progress in strain engineering and metabolic engineering,and the corresponding evolutionary means and high-throughput screening strategies,with a view to providing the help for microbial modification and metabolic engineering research.
作者 田鑫 戴健欣 田园 王光强 艾连中 熊智强 TIAN Xin;DAI Jianxin;TIAN Yuan;WANG Guangqiang;AI Lianzhong;XIONG Zhiqiang(School of Health Science and Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处 《食品与发酵工业》 CAS CSCD 北大核心 2022年第7期298-303,共6页 Food and Fermentation Industries
基金 上海市自然科学基金项目(18ZR1426800) 上海食品微生物工程技术研究中心项目(19DZ2281100)。
关键词 全局转录机器工程 转录因子 应变工程 基因改造 高通量筛选 global transcription machinery engineering transcription factors strain engineering genetic modification high-throughput screening
  • 相关文献

参考文献4

二级参考文献32

  • 1聂明,李怀波,万佳蓉,周传云.工业微生物遗传育种的研究进展[J].现代食品科技,2005,21(3):184-187. 被引量:10
  • 2Eijsink VG, Gaseidnes S, Borchert TV, et al. Directed evolution of enzyme stability. Biomol Eng, 2005, 22: 21-30.
  • 3Frances HA, Patrick LW, Kentaro M, et al. How enzymes adapt: lessons from directed evolution. Trends Biochem Sci, 2001, 26(2): 100-106.
  • 4Nicholas JT. Directed evolution of enzymes for applied biocatalysis. Trends Biotechnol, 2003, 21(11 ): 474-478.
  • 5Alper H, Moxley J, Nevoigt E, et al. Engineering yeast transcription machinery for improved ethanol tolerance and production. Science, 2006, 314(5805): 1565-1568.
  • 6Klein MD, Stephanopoulos G. Assessing the potential of mutational strategies to elicit new phenotypes in industrial strains. Proc Natl Acad Sci USA, 2008, 105(7): 2319-2324.
  • 7Fujita K, Matsuyama A, Kobayashi Y, et al. The genome-wide screening of yeast deletion mutants to identify the genes required for tolerance to ethanol and other alcohols. FEMS Yeast Res, 2006, 6: 744-750.
  • 8Mohibullah N, Hahn S. Site-specific cross-linking of TBP in vivo and in vitro reveals a direct functional interaction with the SAGA subunit Spt3. Gens Dev, 2008, 22: 2994-3006.
  • 9Huisinga KL, Pugh BF. A Genome-wide Housekeeping Role for TFIID and a highly regulated stress-related role for SAGA in Saccharomyces cerevisiae. Molecular Cell, 2004, 13: 573-585.
  • 10James N, Landrieux E. A SAGA-independent function of SPT3 mediates transcriptional deregulation in a mutant of the Ccr4-Not complex in Saccharomyces cerevisiae. Genetics, 2007, 177: 123-135.

共引文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部