期刊文献+

具有GARCH-normal-error时序的贝叶斯单位根检验

Bayesian Unit Root Test for Time Series With GARCH-normal-error
下载PDF
导出
摘要 针对时间序列呈现尖峰厚尾、条件方差时变特征时,DF检验功效性较低的问题,文章基于贝叶斯理论设计了MCMC抽样算法,检验具有GARCH-normal-error时序的平稳性,并用Monte Carlo模拟仿真验证贝叶斯单位根检验的可行性与有效性,结果表明:贝叶斯单位根检验的稳健性较好,样本容量、ρ的大小及波动参数和单整程度的差异对单位根检验势的影响均不大;当ρ<0.7时,DF检验的势略高于贝叶斯方法,但当ρ> 0.7时,贝叶斯方法的势远高于DF检验;DF k检验与DFτ检验的可靠性受样本容量的影响较大。 In view of the low efficacy of DF test when the time series is characterized by sharp peak and thick tail and time-varying conditional variance, this paper designs MCMC sampling algorithm based on Bayesian theory to test the stability of time series with GARCH-normal-error, and verifies the feasibility and validity of Bayesian unit root test by Monte Carlo simulation. The results go as below: The robustness of the Bayesian unit root test is good, and the differences of sample size, ρ, fluctuation parameters and integration degree have little influence on the potential of unit root test. When ρ <0.7, the potential of DF test is slightly higher than that of Bayesian method, but when ρ >0.7, the potential of Bayesian method is much higher than that of DF test. The reliability of DF k test and DF τ test is greatly affected by sample size.
作者 施晓燕 史代敏 Shi Xiaoyan;Shi Daimin(School of Statistics,Southwestern University of Finance and Economics,Chengdu 611130,China;College of Science,Gansu Agricultural University,Lanzhou 730100,China)
出处 《统计与决策》 CSSCI 北大核心 2022年第7期16-19,共4页 Statistics & Decision
基金 国家社会科学基金重点项目(19AZD010) 甘肃农业大学盛彤笙科技创新基金资助项目(GSAU-STS-1713)。
关键词 GARCH-normal-error 贝叶斯因子 单位根检验 势函数 GARCH-normal-error Bayes factor unit root test potential function
  • 相关文献

参考文献2

二级参考文献20

  • 1Phillips, P. C. B. and Zhijie Xiao (1998) . A primer on unit root testing, Journal of Economic Surveys 12 [J]. 423-469.
  • 2汉密尔顿 J D 著 刘明志译.《时间序列分析》[M].中国社会科学出版社,1999..
  • 3David, H. A. (1970) . Order statistics [M]. New York: John Wiley and Sons.
  • 4Bollerslev, T. (1986) . Generalized autoregressive conditional heteroskedasticity, Journal of Econometrics31 [J]. 307-327.
  • 5Engle, R. F. (1982) . Autoregressive conditional hetroskedasticity with estimates of variance of U.K. inflation, Econometrica 50 [J]. 987-1008.
  • 6Dickey, D. A. and Fuller, W. A. (1981) . Likelihood ratio statistics for autoregressive time series with unit root, Econometrica 49 [J].1057-1072.
  • 7Kim, k. and Schmidt, P. (1993) . Unit root tests with conditional heteroskedasticity, Journal of Econometrics 59 [J]. 287-300.
  • 8Ling, S. Li, W. K. , and McAleer, M. (2003) . Estimation and testing for unit root processes with GARCH (1, 1) -errors: theory and Monte Carlo evidence, Econometric Reviews 22 [J]. 179-202.
  • 9Pantula, S.G. (1986) . Comment on modeling the persistence of conditional variance, EconometricReview 5 [J].71-74.
  • 10Pantula, S.G. (1988) . Estimation of autoregressive models with errors, Sankhya B 50 [J]. 119-138.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部