期刊文献+

改进GWO-RBF神经网络的高频地波雷达海杂波预测模型 被引量:1

Prediction model of high frequency surfacewave radar sea clutter with improved GWO-RBF neural network
下载PDF
导出
摘要 高频地波雷达的海上目标探测能力与海杂波的抑制效果息息相关,而海杂波的精确预测又是其有效抑制的重要前提.为实现海杂波的精确预测,提出一种基于改进灰狼算法优化RBF神经网络的预测模型(MGWO-RBF),为解决灰狼优化算法收敛速度慢和易陷入局部最优的缺点,提出一种灰狼狼群分工搜索的策略,使得整个迭代过程中狼群始终兼具大范围搜索和局部探索能力.与经典的粒子群算法、标准灰狼优化算法和动态权重灰狼优化算法对比得出结论:改进的灰狼算法在收敛速度和精度上都有明显提升,MGWO-RBF预测模型对海杂波预测的精度达到96.23%,取得了较好的预测效果. The sea target detection capability of high frequency surface wave radar is closely related to the suppression effect of sea clutter,and the accurate prediction of sea clutter is an important premise for its effective suppression.In order to realize the accurate prediction of sea clutter,a prediction model based on RBF neural network optimized by improved gray wolf optimization algorithm(MGWO-RBF)is proposed.In order to overcome the two shortcomings of grey wolf optimization algorithm,such as slow convergence speed and tendency to fall into the local optimum,a strategy of gray wolf group division search is proposed,which makes the wolves have the ability of both large-scale search and local exploration in the whole iterative process.Compared with the classical particle swarm optimization algorithm,the standard gray wolf optimization algorithm and the dynamic weight gray wolf optimization algorithm,the improved gray wolf algorithm has a significant improvement in convergence speed and accuracy.The accuracy of MGWO-RBF prediction model for sea clutter prediction reaches 96.23%,achieving a better prediction effect.
作者 何康宁 尚尚 杨童 刘明 HE Kangning;SHANG Shang;YANG Tong;LIU Ming(School of Electronics and Information,Jiangsu University of Science and Technology,Zhenjiang 212100,China)
出处 《江苏科技大学学报(自然科学版)》 CAS 北大核心 2022年第1期76-81,共6页 Journal of Jiangsu University of Science and Technology:Natural Science Edition
基金 国家自然科学基金资助项目(61801196) 国防基础科研计划稳定支持专题项目(JCKYS2020604SSJS010) 江苏省研究生科研与实践创新计划资助项目(KYCX20_3142,KYCX20_3139) 江苏科技大学青年科技创新项目。
关键词 海杂波 灰狼优化算法 RBF神经网络 分工搜索 预测 sea clutter grey wolf optimization algorithm RBF neural network division search prediction
  • 相关文献

参考文献7

二级参考文献75

共引文献163

同被引文献29

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部