期刊文献+

基于序列信息的酶的亚类多特征参数识别方法

Recognition of Enzyme Subclasses by Multiple Characteristic Parameters Based on Sequence Information
下载PDF
导出
摘要 基于酶的序列信息,分别使用矩阵打分与离散增量的方法提取各类特征参数进行有效组合,利用支持向量机分类算法对数据集中酶家族类的各个亚类进行分类识别,获得了最佳的预测结果。在刀切法(Jackknife)检验下,氧化还原酶、转移酶、水解酶、裂合酶、异构酶和合成酶中亚类的总体预测成功率分别为96.43%、92.90%、90.85%、99.22%、99.84%和98.86%。预测结果表明,多特征参数的支持向量机方法明显优于单特征参数的矩阵打分方法和离散增量方法,可以有效识别酶家族类中的亚类。 Based on sequence information of enzyme,matrix scoring and increment of diversity were used to extract various characteristic parameters for effective combination.Support vector machine(SVM)classification algorithm was used to classify and recognize each subclass of enzyme family in the data set,and the best prediction results were obtained.The overall jackknife prediction success rates of the subclasses of oxidoreductase,transferase,hydrolase,lyase,isomerase and ligase are 96.43%,92.90%,90.85%,99.22%,99.84%and 98.86%,respectively.The prediction results show that the SVM method with multiple characteristic parameters is superior to the matrix scoring and increment of diversity with single characteristic parameter,and can effectively identify enzyme subclasses.
作者 王婷 WANG Ting(Changzhi Vocational Technical Institute,Changzhi 046000,Shanxi Province,China)
出处 《天津科技》 2022年第4期52-55,共4页 Tianjin Science & Technology
关键词 酶的亚类 矩阵打分 离散增量 支持向量机 enzyme subclass matrix scoring increment of diversity support vector machine
  • 相关文献

参考文献5

二级参考文献63

  • 1李凤敏,李前忠.蛋白质亚细胞定位的识别[J].生物物理学报,2004,20(4):297-306. 被引量:11
  • 2施建宇,潘泉,张绍武,梁彦.基于支持向量机融合网络的蛋白质折叠子识别研究[J].生物化学与生物物理进展,2006,33(2):155-162. 被引量:19
  • 3杨科利,李前忠,林昊.预测酵母(Yeast)基因转录因子结合位点[J].内蒙古大学学报(自然科学版),2006,37(5):524-530. 被引量:16
  • 4胡秀珍,李前忠.用离散量的方法识别蛋白质的超二级结构[J].生物物理学报,2006,22(6):424-428. 被引量:16
  • 5Shen H B,Chou K C.Using ensemble classifier to identify membrane protein types[J].Amino Acids,2007,32:483 -488.
  • 6Chou K C,Shen H B.MemType -2L:A web server for predicting membrane proteins and their types by incorporating evolution information through Pse-PSSM[J].Biochem Biophys Res Comm,2007,360:339-345.
  • 7Kel A E,GoBling E,Reuter I,et al.MATCHTM:A tool for searching transcription factor binding sites in DNA sequences[J].Nucleic Acids Research,2003,13:3576-3579.
  • 8Kielbasa S M,Gonze D,Herzel H.Measuring similarities between transcription factor binding sites[J].J BMC Bioinformatics,2005,6:237.
  • 9Hu X Z,Li Q Z.Prediction of the-hairpins in proteins using support vector machine[J].Protein J,2007.
  • 10Hu X Z,Li Q Z.Using support vector machine to predict-and-turns in proteins[J].J Comput Chem,2007.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部